Results 1 to 9 of 9

Math Help - Need help solving a trigonometric equation.

  1. #1
    Junior Member
    Joined
    Dec 2010
    Posts
    52

    Need help solving a trigonometric equation.

    thanks for the help
    how will it be then if you have one like this 4 sin2(x) + 8 cos(x) = 7 ?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    -1
    e^(i*pi)'s Avatar
    Joined
    Feb 2009
    From
    West Midlands, England
    Posts
    3,053
    Thanks
    1
    If, as I assume, \sin2(x) = \sin^2(x) then use the identity \sin^2(x)+\cos^2(x) = 1

    Your equation will be 4\cos^2(x)-8\cos(x)+3=0 which does factorise but it's probably easier to use the formula to solve for cos(x). You can then find x.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Master Of Puppets
    pickslides's Avatar
    Joined
    Sep 2008
    From
    Melbourne
    Posts
    5,236
    Thanks
    28
    Here's a kicker,

    4 \sin 2x  + 8 \cos x = 7

    4 \times 2 \sin x \cos x+ 8 \cos x  = 7

    8 \sin x \cos x+ 8 \cos x  = 7

    8  \cos x(\sin x+1)  = 7
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor harish21's Avatar
    Joined
    Feb 2010
    From
    Dirty South
    Posts
    1,036
    Thanks
    10
    Quote Originally Posted by paulaa View Post

    4sinēx + 8cosx = 7

    sinē(x) + cosē(x) = 1 <=> sinē(x)=1-cosē(x)

    replace sinē(x) with 1-cosē(x)

    4(1-cosē(x)) + 8cos(x) - 7 = 0 <=> 4cosē(x) + 8cos(x) - 3 = 0You missed the negative sign before 4cos^2x
    4(1-cosē(x)) + 8cos(x) - 7 = 0

     -4 \cos^2(x)+8\cos(x)-3=0

    4\cos^2(x)-8\cos(x)+3=0

    move on..
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Junior Member
    Joined
    Dec 2010
    Posts
    52
    i saw that now, but it will be the same answer ?
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Junior Member
    Joined
    Dec 2010
    Posts
    52
    sorry i was wrong.

    thank you : )
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Junior Member
    Joined
    Dec 2010
    Posts
    52
    i didnīt understod everything so i did it this way

    4sinēx + 8cosx = 7

    sinē(x) + cosē(x) = 1 <=> sinē(x)=1-cosē(x)

    replace sinē(x) with 1-cosē(x)

    4(1-cosē(x)) + 8cos(x) - 7 = 0 <=> 4cosē(x) + 8cos(x) - 3 = 0

    replace cos(x) with t

    4tē + 8t - 3 = 0

    tē + 2t - 3/4 = 0

    (t+1)ē = 4/4 + 3/4 = 7/4

    t1 = (7/4)^0.5 - 1

    t2 = -(7/4)^0.5 - 1

    x1 = cos^-1(((7/4)^0.5)-1)

    but is this right to ?


    Moderator edit: After deleting posts and moving things around, the ordering of how the posts should appear got messed up. For some of the responses in this thread to make sense, note that this post should come before post #4 (harish21's response).
    Last edited by Chris L T521; January 14th 2011 at 03:44 PM. Reason: Post out of sequence of how it should be read. Supplied an explanation.
    Follow Math Help Forum on Facebook and Google+

  8. #8
    MHF Contributor
    skeeter's Avatar
    Joined
    Jun 2008
    From
    North Texas
    Posts
    11,623
    Thanks
    428
    Quote Originally Posted by paulaa View Post
    i didnīt understod everything so i did it this way

    4sinēx + 8cosx = 7

    sinē(x) + cosē(x) = 1 <=> sinē(x)=1-cosē(x)

    replace sinē(x) with 1-cosē(x)

    4(1-cosē(x)) + 8cos(x) - 7 = 0 <=> 4cosē(x) + 8cos(x) - 3 = 0



    4(1-cosē(x)) + 8cos(x) - 7 = 0 <=> 4 - 4cosē(x) + 8cos(x) - 7 = -4cosē(x) + 8cos(x) - 3 = 0

    4cosē(x) - 8cos(x) + 3 = 0

    [2cos(x) - 1][2cos(x) - 3] = 0

    can you finish?
    Follow Math Help Forum on Facebook and Google+

  9. #9
    Junior Member
    Joined
    Dec 2010
    Posts
    52
    the first equation:

    i cant find the worong :/

    sin(5x-((4x)/3) = 1/2

    t=5x-((4x)/3)

    sin(t)=1/2=sin(pi/6 +n*2pi)

    5x - 4pi/3 = pi/6 + n*2pi

    5x = 4pi/3 + pi/6 + n*2pi

    5x = 9pi/6 + n*2pi

    x = (9pi/6 + n*2pi)/5

    x = 3pi/10 + n * 2pi/5

    i think you will have 2 solutions will the other one be x = pi - 3pi/10 + n * 2pi/5

    ?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Solving a trigonometric equation.
    Posted in the Trigonometry Forum
    Replies: 7
    Last Post: November 13th 2010, 06:16 PM
  2. Solving a trigonometric equation.
    Posted in the Trigonometry Forum
    Replies: 1
    Last Post: April 26th 2010, 07:14 AM
  3. solving a trigonometric equation
    Posted in the Trigonometry Forum
    Replies: 2
    Last Post: November 8th 2009, 01:44 PM
  4. Help with solving a trigonometric equation
    Posted in the Trigonometry Forum
    Replies: 7
    Last Post: October 14th 2009, 11:36 PM
  5. Solving a trigonometric equation
    Posted in the Trigonometry Forum
    Replies: 1
    Last Post: April 27th 2009, 07:32 AM

Search Tags


/mathhelpforum @mathhelpforum