Results 1 to 7 of 7

Math Help - Need proving some trig identities!!!!!

  1. #1
    Newbie
    Joined
    Jul 2007
    Posts
    4

    Need proving some trig identities!!!!!

    I'd greatly appreciate is somebody proved the following true.

    1. 1-sinx/1+sinx = (secx-tanx)^2

    2. sinx+1/cosx+cotx = tanx

    3. sin^2x-tan^2x/1-sec^2x = sin^2x
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor red_dog's Avatar
    Joined
    Jun 2007
    From
    Medgidia, Romania
    Posts
    1,252
    Thanks
    5
    (\sec x-\tan x)^2=\left(\frac{1}{\cos x}-\frac{\sin x}{\cos x}\right)^2=\frac{(1-\sin x)^2}{\cos ^2x}=\frac{(1-\sin x)^2}{1-\sin ^2x}=\frac{1-\sin x}{1+\sin x}

    \frac{\sin x+1}{\cos x+\cot x}=\frac{\sin x+1}{\cos x+\frac{\cos x}{\sin x}}=\frac{\sin x(\sin x+1)}{\cos x(\sin x+1)}=\tan x

    \frac{\sin ^2x-\tan ^2x}{1-\sec ^2x}=\frac{\sin ^2x-\frac{\sin ^2x}{\cos ^2x}}{1-\frac{1}{\cos ^2x}}=\frac{\sin ^2x(\cos ^2x-1)}{\cos ^2x-1}=\sin ^2x
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Jul 2007
    Posts
    4

    problems two and three

    For second and third problems, how does the second step turn into the third step.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,846
    Thanks
    320
    Awards
    1
    Quote Originally Posted by fam600 View Post
    2. sinx+1/cosx+cotx = tanx
    For the love of God, PLEASE use parenthesis! I wasted more than 10 minutes struggling with this before I understood what you meant. Your question should be typed as
    (sinx+1)/(cosx+cotx) = tanx

    If you don't understand the confusion, then please review order of operations.

    Okay.
    \frac{sin(x) + 1}{cos(x) + cot(x)} = tan(x)

    \frac{sin(x) + 1}{cos(x) + \frac{cos(x)}{sin(x)} }= tan(x)

    \frac{sin(x) + 1}{cos(x) + \frac{cos(x)}{sin(x)} } \cdot \frac{sin(x)}{sin(x)} = tan(x)

    \frac{sin^2(x) + sin(x)}{sin(x)cos(x) + cos(x)} = tan(x)

    \frac{sin(x)(sin(x) + 1)}{cos(x)(sin(x) + 1)} = tan(x)

    \frac{sin(x)}{cos(x)} = tan(x)

    tan(x) = tan(x)

    -Dan
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,846
    Thanks
    320
    Awards
    1
    Quote Originally Posted by fam600 View Post
    3. sin^2x-tan^2x/1-sec^2x = sin^2x
    Let me guess:
    (sin^2x-tan^2x)/(1-sec^2x) = sin^2x

    \frac{sin^2(x) - tan^2(x)}{1 - sec^2(x)} = sin^2(x)

    \frac{sin^2(x) - \frac{sin^2(x)}{cos^2(x)}}{1 - \frac{1}{cos^2(x)}} = sin^2(x)

    \frac{sin^2(x) - \frac{sin^2(x)}{cos^2(x)}}{1 - \frac{1}{cos^2(x)}} \cdot \frac{cos^2(x)}{cos^2(x)} = sin^2(x)

    \frac{sin^2(x)cos^2(x) - sin^2(x)}{cos^2(x) - 1} = sin^2(x)

    \frac{sin^2(x)(cos^2(x) - 1)}{cos^2(x) - 1} = sin^2(x)

    sin^2(x) = sin^2(x)

    -Dan
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,683
    Thanks
    615
    Hello, fam600!

    Different approaches . . .


    1)\;\frac{1-\sin x}{1+\sin x} \:=\: (\sec x-\tan x)^2

    Multiply top and bottom by (1-\sin x)

    . . \frac{1-\sin x}{1 +\sin x}\cdot\frac{1 -\sin x}{1-\sin x} \;\;=\;\;\frac{1-2\sin x+\sin^2x}{1-\sin^2x} \;\;=\;\;\frac{1-2\sin x+\sin^2x}{\cos^2x}

    . . = \;\;\frac{1}{\cos^2x} - \frac{2\sin x}{\cos^2x} + \frac{\sin^2x}{\cos^2x} \;\;=\;\;\frac{1}{\cos^2x} -2\left(\frac{1}{\cos x}\right)\left(\frac{\sin x}{\cos x}\right) + \left(\frac{\sin x}{\cos x}\right)^2

    . . =\;\;\sec^2x - 2\sec x\tan x + \tan^2x \;\;=\;\;(\sec x - \tan x)^2



    2)\;\frac{\sin x+1}{\cos x+\cot x} \:=\:\tan x

    We have: . \frac{\sin x + 1}{\cos x + \frac{\cos x}{\sin x}}\;=\;\frac{\sin x + 1}{\cos x\left(1 + \frac{1}{\sin x}\right)} \;=\;\frac{\sin x+1}{\cos x\left(\frac{\sin x + 1}{\sin x}\right)} \;=\;\frac{1}{\frac{\cos x}{\sin x}} \;=\;\frac{\sin x}{\cos x} \;=\;\tan x



    3)\;\frac{\sin^2x-\tan^2x}{1-\sec^2x} \:=\:\sin^2x

    We have: . \frac{\sin^2x - \frac{\sin^2x}{\cos^2x}}{1 - \sec^2x} \;=\;\frac{\sin^2x\left(1 - \frac{1}{\cos^2x}\right)}{1-\sec^2x} \;=\;\frac{\sin^2x(1 - \sec^2x)}{1-\sec^2x} \;=\;\sin^2x

    Follow Math Help Forum on Facebook and Google+

  7. #7
    Newbie
    Joined
    Jul 2007
    Posts
    4
    Thanks alot everyone. Sorobon, those different approaches especially helped. Its been a year since my last algebra course and so i've forgotten some of it, thats why i've been having such a hard time with these.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. [SOLVED] Proving Trig identities help!
    Posted in the Trigonometry Forum
    Replies: 2
    Last Post: March 28th 2011, 04:33 AM
  2. Proving Trig Identities
    Posted in the Trigonometry Forum
    Replies: 3
    Last Post: April 23rd 2009, 04:13 PM
  3. Proving Trig Identities
    Posted in the Pre-Calculus Forum
    Replies: 4
    Last Post: February 25th 2009, 09:56 AM
  4. Proving Trig Identities?
    Posted in the Trigonometry Forum
    Replies: 3
    Last Post: January 7th 2009, 08:24 AM
  5. HELP! Trig-Proving Identities
    Posted in the Trigonometry Forum
    Replies: 1
    Last Post: April 22nd 2006, 08:48 AM

Search Tags


/mathhelpforum @mathhelpforum