2sintcost+ sint- 2cost- 1 = 0

t = ___pi

what's the exact answer(no decimals)?

Printable View

- Dec 5th 2010, 08:13 PMvecomaSolve the following equation?
2sin

*t*cos*t*+ sin*t*- 2cos*t*- 1 = 0

t = ___pi

what's the exact answer(no decimals)? - Dec 5th 2010, 08:20 PMProve It
You can factorise this...

$\displaystyle \displaystyle 2\sin{t}\cos{t} + \sin{t} - 2\cos{t} - 1 = 0$

$\displaystyle \displaystyle \sin{t}(2\cos{t} + 1) - 1(2\cos{t} + 1) = 0$

$\displaystyle \displaystyle (2\cos{t} + 1)(\sin{t} - 1) = 0$

$\displaystyle \displaystyle 2\cos{t} + 1 = 0$ or $\displaystyle \displaystyle \sin{t} - 1 = 0$.

Go from here.