1. ## Trig help

In an isosceles triangle the length of each of the two equal sides is 10 cm, and each of the equal angles measures 68 degrees. Find the height of the triangle from one of the two equal sides.
I tried this and got approximately 9.28cm but the answer according to the sheet is supposed to be 7cm.

2. Originally Posted by sinjid9
In an isosceles triangle the length of each of the two equal sides is 10 cm, and each of the equal angles measures 68 degrees. Find the height of the triangle from one of the two equal sides.
I tried this and got approximately 9.28cm but the answer according to the sheet is supposed to be 7cm.

$\displaystyle 10\sin{68^o} = 9.27$

3. An overpass must clear a highway by 12m. If the approach to the overpass may not exceed 8 degrees, find the minimum length of the approach (along the slope).
What does a diagram for this question even look like?

4. Originally Posted by sinjid9
An overpass must clear a highway by 12m. If the approach to the overpass may not exceed 8 degrees, find the minimum length of the approach (along the slope).
What does a diagram for this question even look like?
Your approach needs to be $\displaystyle 12\,\textrm{m}$ above the ground and be at an angle of $\displaystyle 8^{\circ}$. You can draw a right-angle triangle to show this situation. You need to find the length of the approach, which is the hypotenuse of the triangle.

The height of the triangle is the side opposite $\displaystyle 8^{\circ}$.
$\displaystyle \sin{\theta} = \frac{\textrm{Opposite}}{\textrm{Hypotenuse}}$.