I am so confused on how to verify these. Any help is appreciated
its cot squared X
csc[cscX+sin(-X)]= cot^2)(X)
and
its sin & cos to the 4th X and its sin & cos squared X
[Sin^4)(Θ)]-[Cos^4)(Θ)]=[Sin^2)(Θ)]-[Cos^2)(Θ)]
I am so confused on how to verify these. Any help is appreciated
its cot squared X
csc[cscX+sin(-X)]= cot^2)(X)
and
its sin & cos to the 4th X and its sin & cos squared X
[Sin^4)(Θ)]-[Cos^4)(Θ)]=[Sin^2)(Θ)]-[Cos^2)(Θ)]
Ok, here goes.
$\displaystyle \csc x[\csc x + \sin(-x)]=\cot^2(x)$
$\displaystyle \csc x(\csc x - \sin x)=\cot^2 x$
$\displaystyle \csc x\left(\frac{1}{\sin x}-\sin x\right)=\cot^2 x$
$\displaystyle \csc x\left(\frac{1-\sin^2 x}{\sin x}\right)=\cot^2 x$
$\displaystyle \frac{1}{\sin x}\left(\frac{\cos^2 x}{\sin x}\right)=\cot^2 x$
$\displaystyle \frac{\cos^2 x}{\sin^2 x}=\cot^2 x$
$\displaystyle \cot^2 x=\cot^2 x$