Results 1 to 2 of 2

Math Help - Trigonometric "transformation"?

  1. #1
    Newbie
    Joined
    Jan 2009
    Posts
    21

    Trigonometric "transformation"?

    Rewrite 6cos(3t) - 5sin(3t) in the form
    a. A_{1}sin(3t + \phi_{1})
    b. A_{2}cos(3t - \phi_{2})

    I'm a bit puzzled by this. Can anyone offer insight?

    --marc
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,860
    Thanks
    742
    Hello, Marc!

    This takes some Olympic-level gymnastics . . .


    Rewrite 6\cos3t - 5\sin3t in the form:

    (a)\;A\sin(3t + \phi)

    (b)\;A\cos(3t - \phi)
    I'll do part (a) . . .


    We have: . 6\cos3t - 5\sin3t .[1]


    Use the two coefficients as legs of a right triangle.

    . . Find the hypotenuse: . h \:=\:\sqrt{6^2 + 5^2} \:=\:\sqrt{61}


    Multiply by \frac{h}{h}\!:\quad\frac{\sqrt{61}}{\sqrt{61}}\big  g[6\cos3t - 5\sin3t\bigg] \;=\;\sqrt{61}\bigg[\frac{6}{\sqrt{61}}\cos3t - \frac{5}{\sqrt{61}}\sin3t\bigg] .[2]


    Let \phi be in a right triangle with: . opp = 6,\; adj = 5,\; hyp = \sqrt{61}
    Code:
                      *
                    * *
            __    *   *
           √61  *     * 6
              *       *
            * φ       *
          *  *  *  *  *
                  5
    Then: . \sin\phi \,=\,\frac{6}{\sqrt{61}},\;\;\cos\phi \,=\,\frac{5}{\sqrt{61}}


    Substitute into [2]: . \sqrt{61}\bigg[\sin\phi\cos3t - \cos\phi\sin3t\bigg]


    Therefore, we have: . \sqrt{61}\,\sin(3t - \phi)

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 3
    Last Post: October 17th 2011, 03:50 PM
  2. Replies: 1
    Last Post: September 16th 2011, 02:08 AM
  3. Replies: 2
    Last Post: April 24th 2011, 08:01 AM
  4. Replies: 1
    Last Post: October 25th 2010, 05:45 AM
  5. Replies: 1
    Last Post: June 4th 2010, 11:26 PM

Search Tags


/mathhelpforum @mathhelpforum