If tan(A-B)/tan(A) + {sin(C)}^2 / {sin(A)}^2 = 1
Then
Show that
tan(A).tan(B)={tan(C)}^2
How can it be done?
Thanks
Substituting into the original equation should work. If you could use LaTeX tags next time, it sort of helps :
If $\displaystyle \frac{\tan{(A-B)}}{\tan{(A)}} + \frac{\sin{(C)}^2}{\sin{(A)}^2} = 1$
Then
Show that
$\displaystyle \tan{(A)} \cdot \tan{(B)} = \tan{(C)}^2$
How can it be done?
Thanks