please i need help with this problem.
cosB/1-tanB + sinB/1-cotB = sinB + cosB
how can i prove this identity?
working on the left side ...
$\displaystyle \frac{\cos{\beta}}{\cos{\beta}} \cdot \frac{\cos{\beta}}{1-\tan{\beta}} + \frac{\sin{\beta}}{\sin{\beta}} \cdot \frac{\sin{\beta}}{1-\cot{\beta}}$
$\displaystyle \frac{\cos^2{\beta}}{\cos{\beta} - \sin{\beta}} + \frac{\sin^2{\beta}}{\sin{\beta}-\cos{\beta}}$
$\displaystyle \frac{\cos^2{\beta}}{\cos{\beta} - \sin{\beta}} - \frac{\sin^2{\beta}}{\cos{\beta} - \sin{\beta}}$
$\displaystyle \frac{\cos^2{\beta}-\sin^2{\beta}}{\cos{\beta} - \sin{\beta}}$
factor the numerator and finish it up ...