Results 1 to 5 of 5

Thread: tangent of inverse trignometric function

  1. #1
    Member
    Joined
    Nov 2005
    Posts
    172

    tangent of inverse trignometric function

    a) express in term of X :
    $\displaystyle \sin\left( 2 \tan^{-1}(x)\right)$

    b) Find: $\displaystyle \tan\left( \sin^{-1}(\frac {5}{8}) + \cos^{-1}(\frac {1}{6})\right)$
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    848
    Hello, viet!

    a) Express in term of $\displaystyle x$: .$\displaystyle \sin\left(2\tan^{-1}(x)\right)$

    We will need the identity: .$\displaystyle \sin2\theta \:=\:2\sin\theta\cos\theta$

    Recall that an inverse trig value is an angle.

    Let $\displaystyle \theta = \tan^{-1}(x)\quad\Rightarrow\quad\tan\theta = x$

    Since $\displaystyle \tan\theta = \frac{x}{1} = \frac{opp}{adj}$, we have: $\displaystyle opp = x,\:adj = 1$
    . . and Pythagorus gives us: $\displaystyle hyp = \sqrt{x^2+1}$
    Hence: .$\displaystyle \sin\theta = \frac{x}{\sqrt{x^2+1}},\;\cos\theta = \frac{1}{\sqrt{x^2+1}}$


    The problem becomes: .$\displaystyle \sin(2\theta) \:=\:2\sin\theta\cos\theta $

    . . . . . . $\displaystyle =\:2\left(\frac{x}{\sqrt{x^2+1}}\right)\left(\frac {1}{\sqrt{x^2+1}}\right) \;=\;\boxed{\frac{2x}{x^2+1}}$



    b) Find: .$\displaystyle \tan\left[\sin^{-1}\left(\frac {5}{8}\right) + \cos^{-1}\left(\frac {1}{6}\right)\right]$

    We have: .$\displaystyle \tan\left[\underbrace{\sin^{-1}\left(\frac{5}{8}\right)}_{\alpha} + \underbrace{\cos^{-1}\left(\frac{1}{6}\right)}_{\beta}\right] $


    Then: .$\displaystyle \sin\alpha = \frac{5}{8}\quad\Rightarrow\quad opp = 5,\:hyp = 8\quad\Rightarrow\quad adj = \sqrt{39}$
    . . Hence: .$\displaystyle \tan\alpha = \frac{5}{\sqrt{39}}$

    And: .$\displaystyle \cos\beta = \frac{1}{6}\quad\Rightarrow\quad adj = 1,\:hyp = 6\quad\Rightarrow\quad opp = \sqrt{35}$
    . . Hence: .$\displaystyle \tan\beta = \frac{\sqrt{35}}{1} = \sqrt{35}$


    The problem becomes: .$\displaystyle \tan(\alpha + \beta)\;=\;\frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta} \;=\;$ $\displaystyle \frac{\frac{5}{\sqrt{39}} + \sqrt{35}}{1 - \frac{5}{\sqrt{39}}\cdot\sqrt{35}}$

    Multiply top and bottom by $\displaystyle \boxed{\sqrt{39}\!:\;\;\frac{5 + \sqrt{1365}}{\sqrt{39} - 5\sqrt{35}}} $


    I hope I didn't make any stupid blunders . . .
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    Oct 2006
    Posts
    81
    I used your method for part B on a similar problem and it is not working.

    numbers were 5/6 for the sin, 5/9 for the cos.

    ended with (((5/sqrt(11))+(sqrt(56)/5))/(1-(5/sqrt(11))*(sqrt(56)/5)))*sqrt(11)
    but it is wrong
    Last edited by thedoge; Feb 4th 2007 at 06:23 PM. Reason: typo
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    848
    Hello, thedoge!

    I used your method for part B on a similar problem and it is not working.

    Numbers were 5/6 for the sin, 5/9 for the cos.

    Ended with: (((5/sqrt(11))+(sqrt(56)/5))/(1-(5/sqrt(11))*(sqrt(56)/5)))*sqrt(11) .??

    but it is wrong

    Evidently, your preliminary work is correct.
    . . $\displaystyle \tan\alpha = \frac{5}{\sqrt{11}},\;\;\tan\beta = \frac{\sqrt{56}}{5}$


    Identity: .$\displaystyle \tan(\alpha + \beta) \;=\:\frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\cdot\tan\beta} $

    We have: .$\displaystyle \tan(\alpha + \beta) \;=\;\frac{\frac{5}{\sqrt{11}} + \frac{\sqrt{56}}{5}} {1 - \left(\frac{5}{\sqrt{11}}\right)\!\left(\frac{\sqr t{56}}{5}\right)} $


    Multiply top and bottom by $\displaystyle 5\sqrt{11}:\;\;\frac{25 + \sqrt{56}\sqrt{11}}{5\sqrt{11} - 5\sqrt{56}} $

    Follow Math Help Forum on Facebook and Google+

  5. #5
    Member
    Joined
    Oct 2006
    Posts
    81
    Ah ok. Thank you
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Equation for tangent line of inverse function.
    Posted in the Calculus Forum
    Replies: 1
    Last Post: Sep 15th 2011, 11:25 AM
  2. Simple Trignometric Function
    Posted in the Algebra Forum
    Replies: 3
    Last Post: May 6th 2010, 11:07 PM
  3. Trignometric function (graph)
    Posted in the Trigonometry Forum
    Replies: 1
    Last Post: Nov 20th 2009, 05:32 AM
  4. tangent line to inverse function at P
    Posted in the Calculus Forum
    Replies: 2
    Last Post: Aug 21st 2008, 01:40 PM
  5. Replies: 7
    Last Post: Oct 21st 2007, 09:20 PM

Search Tags


/mathhelpforum @mathhelpforum