How can we get minimum & maximum values of "acosA+bsinB+c".
(I am unable to understand it.could you simplify & magnify the solution & give it to me)
$\displaystyle -1 \leq cos A \leq 1 $
$\displaystyle -1 \leq sin B \leq 1 $
substituting: -1, 0, 1
a(-1) + b(-1) + c = c - a - b
a(-1) + b( 0) + c = c - a
a(-1) + b(+1) + c = c - a + b
a(0) + b(-1) + c = c - b
a(0) + b( 0) + c = c
a(0) + b(+1) + c = c + b
a(+1) + b(-1) + c = c + a - b
a(+1) + b( 0) + c = c + a
a(+1) + b(+1) + c = c + a + b
Those are the maximum & minimum values possible.
IF you know the sign value of a,b,c then you can determine exactly which case applies.
Without knowing the positive/negative magnitudes of a,b,c you cannot give a specific answer.
.