Results 1 to 3 of 3

Math Help - Simplify

  1. #1
    mortyr
    Guest

    Simplify

    Could someone simplify these plz
    A) 5cosx >>* sin^2x - sinxcosx
    sin^2x >> * sin^2x cos^2x


    B) (tanx + 2)(tanx - 3) - (6 - tanx) + 2 tanx


    C) cot - 1
    secx - tanx

    x = theta
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Junior Member
    Joined
    Oct 2006
    Posts
    36
    B) (tanx + 2)(tanx - 3) - (6 - tanx) + 2 tanx

    I believe you first need to open up the parentheses, so:
    (tanx)^2 - 3tanx + 2tanx -6
    combine all the like terms, and you should get:
    (tanx)^2 + 2tanx - 12
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,909
    Thanks
    769
    Hello, mortyr!

    The first two are just "algebra": multiplying, cancelling, and combining.


    C)\;\;\frac{\cot x}{\sec x - \tan x} - 1

    We have: . \frac{\cot x - \sec x + \tan x}{\sec x - \tan x} \;=\;\frac{\frac{\cos x}{\sin x} - \frac{1}{\cos x} + \frac{\sin x}{\cos x}}{\frac{1}{\cos x} - \frac{\sin x}{\cos x}}


    Multiply top and bottom by \sin x\cos x\!:\;\;\frac{\sin x\cos x}{\sin x\cos x}\cdot\frac{\frac{\cos x}{\sin x} - \frac{1}{\cos x} + \frac{\sin x}{\cos x}}{\frac{1}{\cos x} - \frac{\sin x}{\cos x}}

    and we have: . \frac{\cos^2x - \sin x + \sin^2x}{\sin x - \sin^2x}\;=\;\frac{1 - \sin x}{\sin x(1 - \sin x)}

    Reduce: . \frac{1}{\sin x} \;=\;\boxed{\csc x}


    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

    Here's another approach . . .
    . . guarenteed to impress/surprise/terrify your teacher.


    Multiply top and bottom of the fraction by \sec x + \tan x\!:

    . . \frac{\cot x}{\sec x -\tan x}\cdot\frac{\sec x + \tan x}{\sec x + \tan x} - 1 \;=\;\frac{\cot x(\sec x + \tan x)}{\sec^2x - \tan^2x} - 1


    Since \sec^2x - \tan^2x\:=\:1, we have: . \cot x(\sec x + \tan x) - 1


    Then we have: . \cot x\sec x + \cot x\tan x - 1


    Since \cot x\tan x = 1, we have: . \cot x\sec x + 1 - 1 \;=\;\cot x\sec x


    And we have: . \frac{\cos x}{\sin x}\cdot\frac{1}{\cos x}\;=\;\frac{1}{\sin x}\;=\;\csc x

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. simplify #2
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: September 21st 2009, 03:37 PM
  2. Please simplify
    Posted in the Trigonometry Forum
    Replies: 4
    Last Post: April 27th 2009, 05:32 AM
  3. Can you simplify this further?
    Posted in the Algebra Forum
    Replies: 4
    Last Post: April 23rd 2009, 07:45 AM
  4. Simplify
    Posted in the Algebra Forum
    Replies: 2
    Last Post: April 12th 2009, 06:06 AM

Search Tags


/mathhelpforum @mathhelpforum