angle BDA = 180 - 128 = 52 degrees
tan BCD = tan 30 = 30/AC = 30/(AD + CD) ---- (1)
tan BDA = tan 52 = 30/AD ---- (2)
from (1)
(AD + CD) = 30/tan 30,
AD = 30/tan 30 - CD ---- (3)
from (2)
AD = 30/ tan52 ---- (4)
equate equation (3) and (4)
30/tan 30 - CD = 30/ tan 52,
solving for CD, we have
CD = 30/tan 30 - 30/ tan 52
CD = 28.52 m
then AD = 30/ tan52 = 23.44 m
A) Area of ABC,
AC = AD + CD
AC = 23.44 + 28.52 = 51.96 m
BC = [(30)^2 + (51.96)^2)]^(1/2) = 60 m
Area = (1/2)(AB)(AC)
= (1/2)(30)(51.96) = 779.4 m^2
Perimeter = AB + AC + BC
= 30 + 51.96 + 60 = 141.96 m
You solve the rest, ok