Quote:

* = ones I think are true

**Number 1: **

Which are always true?

$\displaystyle (a)\;\;P(A \cup B)\:=\:P(A)+P(B) $

$\displaystyle (b)\;\;\text{If }A \subset B,\;\text{ then }P(A \cup B)\:=\:P(A) $

$\displaystyle (c)\;\;P(\sim A)\:=\:100\% -P(A) $ *

$\displaystyle (d)\;\;\text{If }A \subset B,\;\text{ then }P(A\cap B)\:=\:P(A) $ *

$\displaystyle (e)\;\;\text{If }A \subset B,\:\text{ then } P(A\cap B)\:=\:P(B) $

$\displaystyle (f)\;\;\text{For any event }A\!:\;P(A) \,\geq\, 0 $ *

$\displaystyle (g)\;\;P(A\cap B)\: \leq\:P(A)$ *

$\displaystyle (h)\;\;\text{If }A\cap B\:=\: \emptyset,\:\text{ then }P(A\cup B) \:=\: P(A) +P(B) $ *

$\displaystyle (i)\;\;P(A \cap B) \:=\:P(A)\!\cdot\!P(B) $

$\displaystyle (j)\;\;P(S)\:=\:100\%$ *

$\displaystyle (k)\;\;\text{If }A \subset B,\:\text{ then }P(A \cup B)\:=\:P(B) $ *

$\displaystyle (l)\;\;P(A \cup B) \:\leq \:P(A)+P(B) $ *

$\displaystyle (m)\;\;P(A \cup B) \:=\:P(A)+P(B)-P(A \cap B) $ *