Results 1 to 8 of 8

Math Help - Probability winning lottery

  1. #1
    Luv
    Luv is offline
    Newbie
    Joined
    Dec 2006
    Posts
    2

    Probability winning lottery

    I really ned help with this math question.


    1. What are your chances of winning a lottery of 45 numbers if 7 numbers wins it?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    Quote Originally Posted by Luv View Post
    I really ned help with this math question.


    1. What are your chances of winning a lottery of 45 numbers if 7 numbers wins it?
    Probability is the ratio of favorable to possible.

    The possible outcomes are all the possible numbers that you can have is the number of different numbers from 45. That is,
    {{45}\choose 7}=1724425560.

    The favorable outcomes are all the possible ways of choosing a win, which is just one. Thus it is 1 in that.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Luv
    Luv is offline
    Newbie
    Joined
    Dec 2006
    Posts
    2

    Still need help

    Thank you very much.

    I was just wondering if you could tell me the steps how to do that problem because I'm still confused how you got that answer.

    I will very much appreciated it.
    Thank you in advanced.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    Quote Originally Posted by Luv View Post
    Thank you very much.

    I was just wondering if you could tell me the steps how to do that problem because I'm still confused how you got that answer.
    That symbol I used (the paranthesis) the number of combinations. Over here it represents the number of ways selecting 7 objects from 45. You use the following formula,
    \boxed{ \frac{45!}{7!(45-7)!} }
    Where the factorial, means, the product of all numbers before it.
    For example,
    5!=5\cdot 4\cdot 3\cdot 2\cdot 1=120

    Factorials, get large, quickly.
    ---
    Thus, if you wanted to know what would be for 8 out of 45 then it would be,
    {{45}\choose 8}=\frac{45!}{8!(45-8)!}
    And now just use a super calculator (like the one on your computer).
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by Luv View Post
    Thank you very much.

    I was just wondering if you could tell me the steps how to do that problem because I'm still confused how you got that answer.

    I will very much appreciated it.
    Thank you in advanced.
    The probability that the first number chosen is one of yours is 7/45
    (as you have 7 of the 45 numbers)

    If the first number was one of yours the prob that the second is one of
    yours is 6/45 (as you have 6 of the remaining 45 numbers)

    If the first two numbers were yours the prob that the third is one of
    yours is 5/44 (as you have 5 of the remaining 44 numbers)

    and so on untill:

    If the first six numbers were yours the prob that the seventh is one of
    yours is 1/39 (as you have 5 of the remaining 39 numbers).

    The final probability is the product of these:

    7! (45-7)! / 45!=1/45379620

    RonL
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by ThePerfectHacker View Post
    Probability is the ratio of favorable to possible.

    The possible outcomes are all the possible numbers that you can have is the number of different numbers from 45. That is,
    {{45}\choose 7}=1724425560.
    I make:

    {{45}\choose 7}=45379620.

    RonL
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    Quote Originally Posted by CaptainBlack View Post
    I make:

    {{45}\choose 7}=45379620.

    RonL
    It seems my calculating prodigy skills do not work when I reach 50 digits.
    Last edited by CaptainBlack; December 19th 2006 at 08:53 AM. Reason: clumsy fingers
    Follow Math Help Forum on Facebook and Google+

  8. #8
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by ThePerfectHacker View Post
    It seems my calculating prodigy skills do not work when I reach 50 digits.

    Ha! I did it on my fingers

    RonL
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Probability of winning lottery
    Posted in the Statistics Forum
    Replies: 2
    Last Post: June 4th 2014, 08:11 PM
  2. chance of winning the lottery
    Posted in the Statistics Forum
    Replies: 3
    Last Post: March 25th 2011, 09:22 AM
  3. Replies: 0
    Last Post: January 31st 2011, 11:25 AM
  4. Probability of winning exactly one...
    Posted in the Advanced Statistics Forum
    Replies: 7
    Last Post: October 11th 2010, 03:17 PM
  5. Replies: 9
    Last Post: May 1st 2010, 04:09 AM

Search Tags


/mathhelpforum @mathhelpforum