Originally Posted by

**Dragon** The number on a standard six faced die are arranged such that numbers on opposite faces always add to 7.The product of the number appearing on the four lateral faces of a rolled die is calculated(ignoring the numbers on the top and bottom) What is the maximum possible value of this product?

here is the rolled out version of the cube:

Code:

:-----:
: 1 :
:-----:-----:-----:-----:
: 2 : 3 : 5 : 4 :
:-----:-----:-----:-----:
: 6 :
:-----:

another one:

Code:

:-----:
: 4 :
:-----:-----:-----:-----:
: 1 : 2 : 6 : 5 :
:-----:-----:-----:-----:
: 3 :
:-----:

and the last one:

Code:

:-----:
: 2 :
:-----:-----:-----:-----:
: 1 : 3 : 6 : 4 :
:-----:-----:-----:-----:
: 5 :
:-----:

Your job is to find the product of all those middle rows.

So for the first one: $\displaystyle 2\times3\times5\times4=120$

Second One: $\displaystyle 1\times2\times6\times5=60$

Last One: $\displaystyle 1\times3\times6\times4=74$

So the maximum possible value is: $\displaystyle \boxed{120}$