A single card id drawn from each of six well shuffled decks of playing card. Let A be the event that all six cards drawn are different.
(a) find P(A)
(b) Find the probability that at least two of the drawn card match.
Please help.
Thanks
A single card id drawn from each of six well shuffled decks of playing card. Let A be the event that all six cards drawn are different.
(a) find P(A)
(b) Find the probability that at least two of the drawn card match.
Please help.
Thanks
Hello, jojo_jojo!
A single card is drawn from each of six well-shuffled decks of playing cards.
Let be the event that all six cards drawn are different.
(a) Find
The first card can be any card: .
The second can be any of the other 51 cards: .
The third can be any of the other 50 crds: .
The fourth can be any of the other 49 cards: .
The fifth can be any of the other 48 cards: .
The sixth can be any of the other 47 cards: .
Therefore: .
(b) Find the probability that at least two of the drawn card match.
The opposite of "no matches" is "at least one match".