1. ## Counting problem

Let S = {1,2,3,4,5}
(a) List all the 3-permutations of S
(a) List all the 3-combinations of S

Can any one help me with this ??

2. Originally Posted by bhuvan
Let S = {1,2,3,4,5}
(a) List all the 3-permutations of S
(a) List all the 3-combinations of S

Can any one help me with this ??
a) 5C3 = 5!/(3!*(5-3)!) = 10 (order doesn't matter)
b) 5P3 = 5!/(5-3)! = 60 (order matters)

a)
{1,2,3}
{1,2,4}
{1,2,5}
{1,3,4}
{1,3,5}
{1,4,5}
{2,3,4}
{2,3,5}
{2,4,5}
{3,4,5}
Total = 10

b)
{1,2,3}
124
125
132
134
135
142
143
145
152
153
154
.
.
.

3. Hello, bhuvan!

Let $\displaystyle S \:=\: \{1,2,3,4,5\}$

(a) List all the 3-permutations of $\displaystyle S$
There are $\displaystyle _5P_3 \:=\:\tfrac{5!}{2!} \:=\:60$ of them.

I'll start the list . . .

. . $\displaystyle \begin{array}{cccccccccccc} 123 & 124 & 125 & 132 & 134 & 135 & 142 & 143 & 145 & 152 & 153 & 154 \\ \\[-4mm] 213 & 214 & 215 & 231 & 234 & 235 & 241 & 243 & 245 & 251 & 253 & 254 \\ \\[-4mm] 312 & 314 & 315 & 321 & 324 & 325 & 341 & 342 & 345 & 351 & 352 & 354 \\ & & & & \hdots & \text{etc.} & \hdots\end{array}$

(b) List all the 3-combinations of $\displaystyle S$
There are $\displaystyle _5C_3 \:=\:\tfrac{5!}{3!2!} \:=\:10$ of them . . .

. . $\displaystyle \begin{array}{ccccc}(1,2,3)&(1,2,4)&(1,2,5)&(1,3,4 )&(1,3,5) \end{array}$ . $\displaystyle \begin{array}{ccccc}(1,4,5)&(2,3,4)&(2,3,5)&(2,4,5 )&(3,4,5) \end{array}$

Edit: . Ha! TitaniumX beat me to it . . .
.

4. thank you very much ...

How many solutions are there to the equation

x1+x2+x3+x4=17

where x1,x2,x3 and x4 are nonnegative integers ??

5. Originally Posted by bhuvan
How many solutions are there to the equation
x1+x2+x3+x4=17. where x1,x2,x3 and x4 are nonnegative integers ??
The number of ways to put N identical ones into k different variables (non-negative integers) is $\displaystyle {{N+k-1} \choose {N}}$.
Here N=17 and k=?

6. can you please give me one example of that ??

,

,

,

,

,

,

,

# let A={1,2}.List all the permutatiin of the set A

Click on a term to search for related topics.