Let's say the probability of X happening is 99%
The probability that X happens every time 10 times in a row is 0,99^10, right? So approximately 90%
so the numbers are:
A = 0,99
B = 10
C = 0,9
How do i find A, if I know B and C?
Let's say the probability of X happening is 99%
The probability that X happens every time 10 times in a row is 0,99^10, right? So approximately 90%
so the numbers are:
A = 0,99
B = 10
C = 0,9
How do i find A, if I know B and C?
Let me rephrase your question (and notation) and see if I understand what you are asking. We have an event with probability $p$ of happening. We then do $n$ independent trials. Let $X$ be the random variable giving the number of successes in $n$ trials. Then $P(X=n) = p^n$. I think you are asking if you know $C=p^n$ and $n$, how can you find $A=p$. And the answer is $A=\sqrt[n]{p^n} = \sqrt[n]C$.