Given X~N(µ, 1), find the sample size required to ensure that the probability thatxis within 0.1 of µ is greater than 0.95.

Depending on the table that I used, I got 2 different answers.

i) P(-0.1<x- µ <0.1) >0.95

2P(Z<0.1/(1/sqrt(n))) -1>0.95

P(Z<0.1/(1/sqrt(n))) >0.975

0.1/(1/sqrt(n))>1.96

n>384.16

n = 385

ii) P(-0.1<x- µ <0.1) >0.95

1-2P(Z>0.1/(1/sqrt(n)))>0.95I don't understand, where did I do wrong?

P(Z>0.1/(1/sqrt(n)))<0.025

n<384.160.1/(1/sqrt(n))<1.96

n = 383