Re: integral norm proving

Hey cummings123321.

For the ||v|| > 0 consider the definition of the integral and how you partition it up and add up these partitions. Each partition will be positive which means the norm will be positive and zero only if all elements are zero since the sum of all positive things can only be zero if all are zero.

You will need to specify what kind of integral you are using (because it won't be the Riemann integral for C[0,1]).

Re: integral norm proving

Quote:

Originally Posted by

**chiro** Hey cummings123321.

For the ||v|| > 0 consider the definition of the integral and how you partition it up and add up these partitions. Each partition will be positive which means the norm will be positive and zero only if all elements are zero since the sum of all positive things can only be zero if all are zero.

You will need to specify what kind of integral you are using (because it won't be the Riemann integral for C[0,1]).

yes ,i worked out the first part, but how about the secound ∫t|f(t)| i should get an inequality that smaller than t|f(t）| and greater than 0,but i dont how to get it