1. ## Probability

In a class there are 4 freshamn boys, 6 freshman girls and 6 sophomore boys. How many sophomore girls must be present if sex and class are to be independent when a student is selected at random?

2. Hello, r7iris!

In a class there are 4 freshman boys, 6 freshman girls and 6 sophomore boys.
How many sophomore girls must be present if sex and class are to be independent
when a student is selected at random?
Two events, $A$ and $B$, are independent if: . $P(A \cap B) \;=\;P(A)\cdot P(B)$

Let $x$ = number of sophomore girls.

Tabulate the information:

$\begin{array}{cccccccc} & | & \text{Frosh} & | & \text{Soph} & | & \text{Total} & | \\ \hline
\text{Boys} &|& 4 &|& 6 &|& 10 & | \\ \hline
\text{Girls} &|& 6 &|& x &|& x+6 & | \\ \hline
\text{Total} &|& 10 &|& x+6 &|& x+16 & |
\end{array}$

We have: . $P(\text{Boy}\cap\text{Frosh}) \:=\:\frac{4}{x+16}\qquad P(\text{Boy}) \:=\:\frac{10}{x+16} \qquad P(\text{Frosh}) \:=\:\frac{10}{x+16}$

If $P(\text{Boy})$ and $P(\text{Frosh})$ are independent,

. . then: . $P(\text{Boy}\cap\text{Frosh}) \;=\;P(\text{Boy})\cdot P(\text{Frosh})$

So we have: . $\frac{4}{x+16} \;=\;\frac{10}{x+16}\cdot\frac{10}{x+16}$

Multiply by $(x+16)^2\!:\;\;4(x+16) \:=\:100\quad\Rightarrow\quad x \,=\,9$

Therefore, there must be 9 sophomore girls.