Results 1 to 13 of 13

Math Help - Combinations of the letters in 'statistics'?

  1. #1
    Junior Member
    Joined
    Nov 2011
    Posts
    61

    Combinations of the letters in 'statistics'?

    I've just worked it out for permutations but i'm struggling to get the right answer for combinations.

    Any advice appreciated.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member ILikeSerena's Avatar
    Joined
    Dec 2011
    Posts
    733
    Thanks
    121

    Re: Combinations of the letters in 'statistics'?

    Hi Wevans2303!

    What did you try?
    How many permutations did you get?
    What does your gut tell you about what's wrong with it?
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Nov 2011
    Posts
    61

    Re: Combinations of the letters in 'statistics'?

    Quote Originally Posted by ILikeSerena View Post
    Hi Wevans2303!

    What did you try?
    How many permutations did you get?
    What does your gut tell you about what's wrong with it?
    I got 10!/(3!3!2!) = 50400 for permutations.

    For combinations I don't know the general formula so I guessed at 10!/(3!3!2!)(10!-8!) but that was incorrect.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member ILikeSerena's Avatar
    Joined
    Dec 2011
    Posts
    733
    Thanks
    121

    Re: Combinations of the letters in 'statistics'?

    Quote Originally Posted by Wevans2303 View Post
    I got 10!/(3!3!2!) = 50400 for permutations.

    For combinations I don't know the general formula so I guessed at 10!/(3!3!2!)(10!-8!) but that was incorrect.
    I think you're mixing up permutations with combinations.
    The number of permutations is 10!
    The number of combinations is what you already have...
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Junior Member
    Joined
    Nov 2011
    Posts
    61

    Re: Combinations of the letters in 'statistics'?

    Quote Originally Posted by ILikeSerena View Post
    I think you're mixing up permutations with combinations.
    The number of permutations is 10!
    The number of combinations is what you already have...
    No I checked it and I am correct.

    See Stats: Counting Techniques
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Super Member ILikeSerena's Avatar
    Joined
    Dec 2011
    Posts
    733
    Thanks
    121

    Re: Combinations of the letters in 'statistics'?

    If you read carefully, you'll see that it is called the number of "distinguishable permutations" which is different from the number of permutations.

    Either way, I interpreted your problem statement to ask for the number of distinguishable permutations.
    If we look only at the combinations of all of the letters of STATISTICS, there is only 1.

    Can you clarify which combinations are intended?
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Junior Member
    Joined
    Nov 2011
    Posts
    61

    Re: Combinations of the letters in 'statistics'?

    Quote Originally Posted by ILikeSerena View Post
    If you read carefully, you'll see that it is called the number of "distinguishable permutations" which is different from the number of permutations.

    Either way, I interpreted your problem statement to ask for the number of distinguishable permutations.
    If we look only at the combinations of all of the letters of STATISTICS, there is only 1.

    Can you clarify which combinations are intended?
    I'm not entirely sure what you mean, sorry about this..

    If I check it on wolfram, I get 50400 permutations and 732 combinations.

    permutations {s,t,a,t,i,s,t,i,c,s} - Wolfram|Alpha

    combinations {s,t,a,t,i,s,t,i,c,s} - Wolfram|Alpha
    Follow Math Help Forum on Facebook and Google+

  8. #8
    Super Member ILikeSerena's Avatar
    Joined
    Dec 2011
    Posts
    733
    Thanks
    121

    Re: Combinations of the letters in 'statistics'?

    All right, I give up!
    I'd rather not go into hairsplitting about the meaning of words anyway.

    So let's focus on the combinations.
    Wolfram shows the actual combinations, which are all unordered letter combinations of zero or more letters.
    This is not so easy to calculate afaik.
    Wolfram appears to do it by simply enumerating all possibilities.

    Are you supposed to use a calculator to do this?
    Or are you supposed to find a formula for it?

    I'll have to think about it a bit more to find a generic formula...


    Edit: This is supposed to be "Basic Statistics and Probability" isn't it?
    Follow Math Help Forum on Facebook and Google+

  9. #9
    Junior Member
    Joined
    Nov 2011
    Posts
    61

    Re: Combinations of the letters in 'statistics'?

    Quote Originally Posted by ILikeSerena View Post
    All right, I give up!
    I'd rather not go into hairsplitting about the meaning of words anyway.

    So let's focus on the combinations.
    Wolfram shows the actual combinations, which are all unordered letter combinations of zero or more letters.
    This is not so easy to calculate afaik.
    Wolfram appears to do it by simply enumerating all possibilities.

    Are you supposed to use a calculator to do this?
    Or are you supposed to find a formula for it?

    I'll have to think about it a bit more to find a generic formula...


    Edit: This is supposed to be "Basic Statistics and Probability" isn't it?
    Well thank you for being patient. I assumed it was basic and I was missing something obvious, as the permutations formula is not that complex.

    I'm expected to know the formula and manipulate the factorials.

    My lecturer mentioned something like:

    (n1r1)(n2r2)(n3r3)...?
    Follow Math Help Forum on Facebook and Google+

  10. #10
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,807
    Thanks
    697

    Re: Combinations of the letters in 'statistics'?

    Hello, Wevans2303!

    Can you give us the original wording of the problem?


    Number of permutations of the letters in STATISTICS ?
    The answer is: . \frac{10!}{2!\,3!\,3!} \:=\:50,\!400


    As ILikeSerena pointed out there is one combination for the ten letters.


    Wolfram's solution (not explained clearly) seems to provide:
    . . the number of distinct subsets of the ten letters.

    If that's what the problem wanted, it should have said so . . . clearly!

    Follow Math Help Forum on Facebook and Google+

  11. #11
    Junior Member
    Joined
    Nov 2011
    Posts
    61

    Re: Combinations of the letters in 'statistics'?

    Quote Originally Posted by Soroban View Post
    Hello, Wevans2303!

    Can you give us the original wording of the problem?


    The answer is: . \frac{10!}{2!\,3!\,3!} \:=\:50,\!400



    As ILikeSerena pointed out there is one combination for the ten letters.


    Wolfram's solution (not explained clearly) seems to provide:
    . . the number of distinct subsets of the ten letters.

    If that's what the problem wanted, it should have said so . . . clearly!


    Hi, yes I agree the wording of the question is a little ambiguous, it just says 'combinations' but I am 99% certain it means distinct subsets.

    It just says 'find the number of combinations of the letters in statistics'.
    Follow Math Help Forum on Facebook and Google+

  12. #12
    Super Member ILikeSerena's Avatar
    Joined
    Dec 2011
    Posts
    733
    Thanks
    121

    Re: Combinations of the letters in 'statistics'?

    Quote Originally Posted by Soroban View Post
    Wolfram's solution (not explained clearly) seems to provide:
    . . the number of distinct subsets of the ten letters.
    Hah! Not even that, since {s,s} is counted as a separate combination, which is not a "subset".

    I do wonder what kind of definition Wolfram uses, since I don't know it (yet).
    Follow Math Help Forum on Facebook and Google+

  13. #13
    Super Member ILikeSerena's Avatar
    Joined
    Dec 2011
    Posts
    733
    Thanks
    121

    Re: Combinations of the letters in 'statistics'?

    Quote Originally Posted by Wevans2303 View Post
    My lecturer mentioned something like:

    (n1r1)(n2r2)(n3r3)...?
    Well, let's see... if we just look at the combinations of 3 letters, we get:

    1: sss
    1: ttt
    (4 1): ss <other letter>
    (4 1): tt <other letter>
    (4 1): ii <other letter>
    (5 3): 3 different letters

    So the number of combinations of 3 letters out of "statistics" is:
    1+1+4+4+4+10 = 24

    We would have to repeat something like this for each number between 0 and 10.



    No. I'm not getting a simple formula yet.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Re-aranging letters
    Posted in the Discrete Math Forum
    Replies: 3
    Last Post: March 28th 2010, 06:43 AM
  2. Decoding letters
    Posted in the Algebra Forum
    Replies: 1
    Last Post: October 28th 2009, 01:15 AM
  3. Choosing 6 letters out of 10
    Posted in the Discrete Math Forum
    Replies: 9
    Last Post: September 16th 2009, 09:58 AM
  4. statistics- permutations and combinations
    Posted in the Statistics Forum
    Replies: 2
    Last Post: February 10th 2008, 01:49 PM
  5. String of Letters
    Posted in the Discrete Math Forum
    Replies: 7
    Last Post: September 11th 2006, 09:07 PM

Search Tags


/mathhelpforum @mathhelpforum