Results 1 to 3 of 3

Math Help - prob 1

  1. #1
    Senior Member
    Joined
    Feb 2010
    Posts
    456
    Thanks
    34

    prob 1

    seven digits from the digits 1 2 3 4 5 6 7 8 9 are written in a random order.the probability that this seven digit no is divisible by 11 is

    how to do this
    i have got total cases as 9*8*7*6*5*4*3
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Newbie
    Joined
    Sep 2011
    Posts
    24

    Re: prob 1

    If a 7 digits no. "a b c d e f g" is divisible by 11, then

    a+c+e+g = b+d+f

    But I don't know the reason and the method to acquire that combinations.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,657
    Thanks
    598

    Re: prob 1

    Hello, prasum!

    Seven digits from the digits {1, 2, 3, 4, 5, 6, 7, 8, 9} are written in a random order.
    Find the probability that this seven-digit number is divisible by 11.

    i have got total cases as: 9*8*7*6*5*4*3 = 181,440 . Right!

    BookEnquiry has the right idea . . .

    Let ABCDEFG be the 7-digit number.

    If ABCDEFG is a multiple of 11,
    . . then (A+C+E+G)-(B+D+F) is a multiple by 11.

    I found no formula for counting the multiples-of-11.
    I was forced to use Brute Force listing.

    I found 54 sets of digits which produce multiples-of-11.

    \begin{array}{cc}\text{A, C, E, G} & \text{B, D, F} \\ \hline 9,8,7,6 & 5,2,1 \\ 9,8,7,6 & 4,3,1 \\ 9,8,7,5 & 4,2,1 \\ 9,8,7,4 & 3,2,1 \\ 9,8,7,2 & 6,5,4 \\ 9,8,7,1 & 6,5,3 \\ 9,8,6,5 & 3,2,1 \\ 9,8,6,2 & 7,4,3 \\ 9,8,6,1 & 7,4,2 \\ 9,7,6,4 & 8,5,2 \\ 9,7,6,3 & 8,5,1 \\ 9,7,6,3 & 8,4,2 \\ 9,6,5,4 & 8,3,2 \\ 9,6,5,3 & 7,4,1 \\ 9,6,5,2 & 7,3,1 \\ 9,5,4,3 & 7,2,1 \\ 9,4,3,1 & 8,7,2 \\ 9,3,2,1 & 6,5,4  \end{array} . . \begin{array}{cc} \text{A, C, E, G} & \text{B, D, F} \\ \hline 8,7,6,4 & 9,3,2 \\ 8,7,6,2 & 5,4,3 \\ 8,7,6,1 & 5,4,2 \\ 8,7,5,4 & 9,3,1 \\ 8,7,5,3 & 9,2,1 \\ 8,7,5,3 & 6,4,2 \\ 8,7,5,2 & 6,4,1 \\ 8,6,5,4 & 9,2,1 \\ 8,6,5,4 & 7,3,2 \\ 8,6,5,1 & 4,3,2 \\ 8,5,4,2 & 9,7,3 \\ 8,5,4,1 & 9,7,2 \\ 8,5,4,1 & 9,6,3 \\ 8,4,3,2 & 9,7,1 \\ 8,4,3,1 & 9,5,2 \\ 7,6,5,4 & 8,2,1 \\ 7,6,5,3 & 9,8,4 \\ 7,6,5,2 & 9,8,3 \end{array} . . \begin{array}{cc}\text{A, C, E, G} & \text{B, D, F} \\ \hline 7,6,5,1 & 9,8,2 \\ 7,5,4,3 & 9,8,2 \\ 7,5,4,2 & 9,8,1 \\ 7,5,4,2 & 9,6,3 \\ 7,5,4,1 & 9,6,2 \\ 7,4,3,2 & 9,6,1 \\ 7,4,3,1 & 8,5,2 \\ 6,5,4,3 & 9,8,1 \\ 6,5,4,3 & 9,7,2 \\ 6,5,4,2 & 9,7,1 \\ 6,5,3,2 & 8,7,1 \\ 6,5,3,1 & 9,4,2 \\ 6,4,3,2 & 9,5,1 \\ 6,4,3,1 & 7,5,2 \\ 5,4,3,2 & 7,6,1 \\ 5,3,2,1 & 9,7,6 \\ 4,3,2,1 & 9,7,5 \\ 4,3,2,1 & 8,7,6 \end{array}


    In each of the 54 sets, \{A,C,E,G\} can be arranged in 4! ways
    . . and \{B,D,F\} can be arranged in 3! ways.

    Hence, there are: . 54 \times 4!\times 31 \:=\:7,\!776 numbers divisible by 11.

    Therefore: . P(\text{div. by 11}) \;=\;\frac{7,\!776}{181,\!440} \;=\;\frac{3}{70}

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 2
    Last Post: April 12th 2011, 10:13 AM
  2. AP prob
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: May 6th 2010, 09:53 PM
  3. Prob-Value
    Posted in the Advanced Statistics Forum
    Replies: 0
    Last Post: August 25th 2009, 04:49 AM
  4. Log Prob.
    Posted in the Algebra Forum
    Replies: 3
    Last Post: February 3rd 2009, 04:14 PM
  5. prob
    Posted in the Calculus Forum
    Replies: 1
    Last Post: December 2nd 2007, 09:00 AM

Search Tags


/mathhelpforum @mathhelpforum