Ok, \displaystyle \bar{R}^2=1-(1-R^2)\frac{n-1}{n-k}

and \displaystyle \bar{R}^2\leq R^2

Given this equation:

\displaystyle Ln[C]=4.30-1.34*Ln[P]+0.17*Ln[Y]

The sample was 46 states.

\displaystyle n=46, \ k=3, \ \bar{R}^2=0.27

\displaystyle R^2=\frac{(\bar{R}^2-1)(n-k)}{n-1}+1=\frac{(.27-1)(46-3)}{46-1}+1=0.302

Is the correct derivation of R^2\mbox{?}