Shortly after being put into service, ssome buses manufactured by a certain company have developed cracks on the underside of the main frame. Suppose a particular city has 25 of these buses, and cracks have actually appeared in 8 of them.

a) How many ways are there to select a sample of 5 buses from the 25 for a thorough inspection?

If the order in which the buses are selected does not matter the answer is

If the order does matter the answer is

b) In how many ways can a sample of 5 buses contain exactly 4 with visible cracks?

There are 17 ways to choose the bus without the crack times

ways to choose the 4 buses with the visible cracks

c) If a sample of 5 buses is chosen at random, what is the probability that exactly 4 of the 5 will have visible cracks?

The probablitiy of choosing exactly 4 buses with visible cracks out of 5 radomly selected buses is

d) If buses are selected as in part (c), what is the probability that at least 4 of those selected will have visible cracks.

This would be the probability of exactly 4 added to exactly 5 buses chosen will have visible cracks.

The number of ways to choose exactly 5 buses with visible cracks is

Probability of choosing exactly 5 buses with visible cracks is

Probability of choosing 5 buses with at least 4 with visible cracks .0224 + .0011 = .0235.

Please citique the above calculations