Plato's formula is $\displaystyle 2$ in $\displaystyle 2^n$, or $\displaystyle 1$ in $\displaystyle (2^n)/2$, where n = the number of fair tosses.

So if there are 10 tosses we simply substitute n = 10 into the formula like so, and then simplify:

$\displaystyle p = 2$ in $\displaystyle 2^n$

$\displaystyle p = 2$ in

http://www.mathhelpforum.com/math-he...2522daba-1.gif
$\displaystyle p = 2$ in $\displaystyle 1024$

$\displaystyle p = 1$ in $\displaystyle 512$

or $\displaystyle p = \frac {1}{512}$

Alternatively we could do the following:

$\displaystyle p = 1$ in $\displaystyle (2^n)/2$

$\displaystyle p = 1$ in $\displaystyle (2^{10})/2$

$\displaystyle p = 1$ in $\displaystyle 1024/2$

$\displaystyle p = 1$ in $\displaystyle 512$

or $\displaystyle p = \frac {1}{512}$