Results 1 to 11 of 11

Math Help - Probability-Selections&Arrangement

  1. #1
    Member
    Joined
    Dec 2009
    Posts
    171

    Probability-Selections&Arrangement

    The Question:

    Given a 5x5 Chess-Board (with 25 squares).

    On each square, someone writes randomly one of the digits- 0 or 1.

    A. What is the probability of that in at least on row, the sum of the digits will be excatly 3?

    B.Someone scatters randomly 25 discs on the board. On 10 of the discs, the digit 1 is written and on 15 of the other discs, the digit 0 is written.

    What is the probability that the sum of the digits in each and every one of the rows will the same?


    I've no idea about these two parts...I'll be delighted to get some guidance

    Thanks a lot!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,607
    Thanks
    1574
    Awards
    1
    Quote Originally Posted by WannaBe View Post
    The Question:
    Given a 5x5 Chess-Board (with 25 squares).
    On each square, someone writes randomly one of the digits- 0 or 1.
    A. What is the probability of that in at least on row, the sum of the digits will be excatly 3?
    Each row can be any one of 2^5=32 different bit-strings.
    Only \binom{5}{3}=10 of those contain exactly three ones.
    The probability that row one does not add to three is \frac{22}{32}.
    So what is the probability that no row adds to three?
    Now answer your original question.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    Dec 2009
    Posts
    171
    I'm sorry ,but I think I didn't understand your guidance...
    In your first sentence you've said there are 32 different "arranging" options of a row...
    In 10 of these possibilities - the sum of the digits in the row is 3...
    So, when looking at a single row- the probabity for that its sum will not be three is
    \frac{22}{32} . We have 5 rows . Does it means that the probability that no row adds to three is  \frac {\frac{22}{32} } { 2^{25} } ?

    If it isn't what you meant, I don't think I understood your guidance...

    Hope you'll be able to guide me... [ BTW-I tried doing something like you did, but got stuck excatly at the same point...]

    Thanks!
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,607
    Thanks
    1574
    Awards
    1
    The probability that no row adds to three is \left(\frac{22}{32}\right)^5.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Member
    Joined
    Dec 2009
    Posts
    171
    So the needed probability is:

      1 -  \left(\frac{22}{32}\right)^5
    ?
    Thanks a lot!
    Can you guide me in the second part of the question plz?


    Thanks!
    Follow Math Help Forum on Facebook and Google+

  6. #6
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,607
    Thanks
    1574
    Awards
    1
    Quote Originally Posted by WannaBe View Post
    Can you guide me in the second part of the question plz?
    No, not until you have posted some efforts on your part.
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Member
    Joined
    Dec 2009
    Posts
    171
    Well... You are right... Here is what I've tried:
    The only option to scatter the discs in a way the digits will add up to an identical sum is that the sum of each row will be 3...
    So... We need to put 3 1's in each row and 2 0's in each row... Let's start with the 1's:
    We have  ( \binom{5}{3} ) ^ 5 options to put them in a way that there will be 3 in each row... We'll put the 0's in the empty squres...
    Now we need to calculate the number of options to scatter the 25 discs:
    So, we'll choose 10 squares and put the 1-discs on them....We have
     \binom{25}{10} to do it... After we put the 1-squares, the 0-digits will be put instantly...

    Hence the probability is:
     \frac {( \binom{5}{3} ) ^ 5 } {\binom{25}{10}}=\frac{2500}{81719}

    I realy doubt that my calculations are correct... I think I did something wrong in the last part...
    I'll be delighjted to get a verification on this and on the first one...

    Thanks a lot!
    Follow Math Help Forum on Facebook and Google+

  8. #8
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,607
    Thanks
    1574
    Awards
    1
    BUT there are only 10 ones.
    How canthere be three is each of five rows?
    Follow Math Help Forum on Facebook and Google+

  9. #9
    Member
    Joined
    Dec 2009
    Posts
    171
    Sry...So all of my steps are correct for scattering the 0's ... The sum of each row should be 2 ...

    Am I right?

    Thanks
    Follow Math Help Forum on Facebook and Google+

  10. #10
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,607
    Thanks
    1574
    Awards
    1
    Yes.
    Follow Math Help Forum on Facebook and Google+

  11. #11
    Member
    Joined
    Dec 2009
    Posts
    171
    thanks a lot!
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. No of selections and probability
    Posted in the Statistics Forum
    Replies: 10
    Last Post: September 29th 2010, 03:39 AM
  2. arrangement probability
    Posted in the Statistics Forum
    Replies: 1
    Last Post: June 1st 2010, 07:43 PM
  3. [SOLVED] Probability of independent selections
    Posted in the Advanced Statistics Forum
    Replies: 1
    Last Post: December 8th 2009, 04:11 PM
  4. two random selections, probability
    Posted in the Statistics Forum
    Replies: 3
    Last Post: October 15th 2009, 08:12 AM
  5. Probability Letter Arrangement
    Posted in the Discrete Math Forum
    Replies: 2
    Last Post: August 21st 2009, 09:49 AM

/mathhelpforum @mathhelpforum