Results 1 to 4 of 4

Math Help - Help needed for a probablilty question

  1. #1
    Newbie
    Joined
    Feb 2010
    Posts
    1

    Angry Help needed for a probablilty question

    Ok so this is really bugging me, because I thought i finally understood it, but then my book is giving me different answers to what I'm getting.
    Anyways, heres the problem, can anyone answer it and show working , so I can learn. Thanks

    Given P(R|S) = 0.5, P(R|S') = 0.4 and P(S) = 0.6 find:

    (a) P(R) (b) P(S|R) (c) P(S'|R) (d) P(S'|R')
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Senior Member
    Joined
    Nov 2009
    Posts
    277
    Thanks
    2
    P(R)
    = P(R(S+S'))
    = P(R1)
    = P(RS)+P(RS')
    = P(R|S)P(S)+P(R|S')P(S')
    = P(R|S)P(S)+P(R|S')(1-P(S))

    P(RS)
    = P(R|S)P(S)
    = P(S|R)P(R)

    Now you know P(R) and P(RS), so you know P(RS')
    P(RS')
    = P(S'|R)P(R)

    P(S)
    = ...
    = P(S|R)P(R)+P(S|R')(1-P(R))
    gives
    P(SR')
    = P(S|R')P(R')
    = P(S|R')(1-P(R))
    Using this,
    P(1)
    = P((R+R')(S+S'))
    = P(RS) + P(RS')+P(R'S)+P(R'S')
    gives
    P(R'S')
    = P(S'|R')P(R')
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,712
    Thanks
    1642
    Awards
    1
    Quote Originally Posted by kamicool17 View Post
    Given P(R|S) = 0.5, P(R|S') = 0.4 and P(S) = 0.6 find:
    (a) P(R) (b) P(S|R) (c) P(S'|R) (d) P(S'|R')
    P(RS)=P(R|S)P(S)
    P(RS')=P(R|S')P(S')
    P(R)=P(RS)+P(RS')

    Now finish.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,751
    Thanks
    651
    Hello, kamicool17!

    Another approach . . . (much longer, though)


    Given: . P(R|S) = 0.5,\;\;P(R|S') = 0.4,\;\;P(S) = 0.6

    Find: . (a)\;P(R) \qquad (b)\;P(S|R)\qquad (c)\;P(S'|R) \qquad (d)\;P(S'|R')

    We have this table:

    . . \begin{array}{c|| c|c||c}<br />
& S & S' & \text{Total } \\ \hline \hline<br />
R & {\color{blue}(a)} & {\color{blue}(c)} & {\color{blue}(e)} \\ \hline<br />
R' & {\color{blue}(b)} & {\color{blue}(d)} & {\color{blue}(f)} \\ \hline \hline<br />
\text{Total} & 0.60 & 0.40 & 1.00 \end{array}

    We have: . P(S) = 0.60 \quad\Rightarrow\quad P(S') = 0.40
    So we can fill in the bottom row.



    We have: . P(R|S) = 0.5

    Then: . \frac{P(R \wedge S)}{P(S)} \;=\;0.5 \quad\Rightarrow\quad \frac{P(R \wedge S)}{0.6} \:=\:0.5 <br />

    Hence: . P(R \wedge S) \,=\,0.30\;{\color{blue}(a)} \quad\Rightarrow\quad P(R' \wedge S) \:=\:0.30\;{\color{blue}(b)}

    . . \begin{array}{c|| c|c||c}<br />
& S & S' & \text{Total } \\ \hline \hline<br />
R & 0.30 & (c) & (e) \\ \hline<br />
R' & 0.30 & (d) & (f) \\ \hline \hline<br />
\text{Total} & 0.60 & 0.40 & 1.00 \end{array}



    We have: . P(R|S') = 0.4

    Then: . \frac{P(R \wedge S')}{P(S')} \:=\:0.4 \quad\Rightarrow\quad \frac{P(R \wedge S')}{0.4} \:=\:0.4

    Hence: . P(R \wedge S') \:=\:0.16\;{\color{blue}(c)} \quad\Rightarrow\quad P(R' \wedge S') \:=\:0.24\;{\color{blue}(d)}

    Also: . P(R) \:=\:0.46 \;{\color{blue}(e)}\quad\Rightarrow\quad P(R') \:=\:0.54\;{\color{blue}(f)}



    And we have completed the table:

    . . \begin{array}{c|| c|c||c}<br />
& S & S' & \text{Total } \\ \hline \hline<br />
R & 0.30 & 0.16 & 0.46 \\ \hline<br />
R' & 0.30 & 0.24 & 0.54 \\ \hline \hline<br />
\text{Total} & 0.60 & 0.40 & 1.00 \end{array}

    You can now answer the questions . . .

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 0
    Last Post: January 31st 2011, 11:25 AM
  2. Probablilty-with marbles!
    Posted in the Statistics Forum
    Replies: 3
    Last Post: March 23rd 2010, 07:41 PM
  3. [SOLVED] probablilty of three dices
    Posted in the Statistics Forum
    Replies: 2
    Last Post: October 26th 2009, 08:21 PM
  4. Help needed on IMO 1990 question
    Posted in the Discrete Math Forum
    Replies: 6
    Last Post: March 28th 2009, 06:36 AM
  5. Replies: 3
    Last Post: February 19th 2009, 02:20 AM

Search Tags


/mathhelpforum @mathhelpforum