Predicting the Next Drawing Number (1 to 4)

I have a problem unable to solve. I am not an expert in maths, if possible, PLEASE provide an explanation. Any comment(s) greatly appreciated.

there are 4 possible outcomes 1 to 4, results are independent to each other and drawn randomly (suppose to)

BUT the EXPECTED percentages (from computer) are as follows:

1 = 20%

2 = 22%

3 = 33%

4 = 25%

The ACTUAL percentages (in last 500 draws) are: (which is very close to expected)

1 = 21%

2 = 22%

3 = 32%

4 = 25%

The Actual percentages (in last 50 draws) are:

1 = 26%

2 = 22%

3 = 22%

4 = 30%

The ACTUAL percentages (in last 10 drawss) are:

1 = 20%

2 = 10%

3 = 30%

4 = 40%

and the history for the last 10 drawings are as follows (left=most recent):

3, 4, 4, 4, 2, 3, 4, 3, 1, 1

and i want to predict which number will be picked next

OR able to find the probability of next picking a 1 , 2, 3 and 4.

I believe that Poisson distribution is relevant because it can predict probability of a certain outcome which relies upon knowing historical data. i.e. in excel "=((POWER(historal average,wanted outcome))*POWER(2.718,-history average))/FACT(wanted outcome)"

BUT it does not take into consideration on counting specifically - the order of the last 10 or so results to calculate (which i believe is most important).

Please also note that the law of large numbers/averages would NOT help here, because I am predicting the NEXT result and not the results in the long run.

Perhaps somehow combing with break-even analysis, maximum same number draws or something else.. i am not sure

Break-Even Analysis: =(log2/((log a)-(log(a-1)))) where the probability of the outcome is 1/a

Maximum Same Number Draws: i.e. in excel "=ROUND(((LN(no of throws))/(-LN(1-probability of occuring))),0)"

Any comments?

Thanks