1. ## evalute answer will be a natural number

2(15-11)^2/(3(2^2 - 2)^2 - 10^2) + (5-2^2)^2+3^2/(6-4)^2+3

I worked it out like this

2(15-11)^2/(3(2^2 - 2)^2 - 10^2) + (5-2^2)^2+3^2/(6-4)^2+3
32/(12-10)^2+(1)^2+9/7
32/4 + 10/7
448+80/56= 9.4
is this correct?

2. Originally Posted by wolfhound
2(15-11)^2/(3(2^2 - 2)^2 - 10^2) + (5-2^2)^2+3^2/(6-4)^2+3

I worked it out like this

2(15-11)^2/(3(2^2 - 2)^2 - 10^2) + (5-2^2)^2+3^2/(6-4)^2+3
32/(12-10)^2+(1)^2+9/7
32/4 + 10/7
448+80/56= 9.4
is this correct?
2(15-11)^2/(3(2^2 -2)^2 -10^2) + (5-2^2)^2 + 3^2/(6-4)^2 + 3

$\displaystyle 2(15-11)^2/(3(2^2-2)^2-10^2) + (5-2^2)^2+3^2/(6-4)^2+3$

$\displaystyle \dfrac{2(4^2)}{(3(2^2) - 10^2} + (5-4)^2 + \dfrac{3^2}{(6-4)^2} + 3$

$\displaystyle \dfrac{32}{12 - 100} + 1 + \dfrac{9}{4} + 3$

$\displaystyle \dfrac{32}{-88} + \dfrac{25}{4}$

$\displaystyle \dfrac{-16}{44} + \dfrac{275}{44}$

$\displaystyle \dfrac{259}{44}$
evalute answer will be a natural number
It's a rational number.
Is the original entry correct?

3. Thanks for your reply aidan,I'm sorry I made a mistake on the division in the first part the^2 is not beside 10 its outside the )^2 after the 10

2(15-11)^2/(3(2^2 - 2)^2 - 10)^2 + (5-2^2)^2+3^2/(6-4)^2+3

Originally Posted by aidan
2(15-11)^2/(3(2^2 -2)^2 -10^2) + (5-2^2)^2 + 3^2/(6-4)^2 + 3

$\displaystyle 2(15-11)^2/(3(2^2-2)^2-10^2) + (5-2^2)^2+3^2/(6-4)^2+3$

$\displaystyle \dfrac{2(4^2)}{(3(2^2) - 10^2} + (5-4)^2 + \dfrac{3^2}{(6-4)^2} + 3$

$\displaystyle \dfrac{32}{12 - 100} + 1 + \dfrac{9}{4} + 3$

$\displaystyle \dfrac{32}{-88} + \dfrac{25}{4}$

$\displaystyle \dfrac{-16}{44} + \dfrac{275}{44}$

$\displaystyle \dfrac{259}{44}$
It's a rational number.
Is the original entry correct?