1. ## P(H heads in a row) given N coin flips

Hi,

I recently thought of the following problem and my basic grasp of probability and combinatorics is not enough to handle it:

You flip a coin N times. What is the probability P(N,H) that you get at least one sequence of at least H heads in a row?

Since this question deals with the number of times a result will happen, I tried to use a Poisson Distribution, but I'm having trouble separating the problem into mutually exclusive events.

I wrote a program to do a simulation and found that P(20,7) ≈ 0.058, so please make sure your answer fits with this result.

2. Originally Posted by lambda
Hi,

I recently thought of the following problem and my basic grasp of probability and combinatorics is not enough to handle it:

You flip a coin N times. What is the probability P(N,H) that you get at least one sequence of at least H heads in a row?

Since this question deals with the number of times a result will happen, I tried to use a Poisson Distribution, but I'm having trouble separating the problem into mutually exclusive events.

I wrote a program to do a simulation and found that P(20,7) ≈ 0.058, so please make sure your answer fits with this result.

I tried this approach and got $P(n,h) = \frac{acceptable\_series}{total\_possible\_series} = \frac{2^{n-h}(n-h + 1)}{2^n} = \frac{n-h + 1}{2^h}$ but kept getting answers that were roughly 2x too large.