Results 1 to 3 of 3

Math Help - Functions

  1. #1
    Junior Member
    Joined
    Aug 2009
    Posts
    62

    Functions

    Hi everyone,

    I am asked to determine all functions f continious in \mathbb{R} such as:

     {f(2009)=2009^{2008}\atop (\forall(x;t)\in \mathbb{R}^2)  f(x+t)=f(x)+f(t)}

    I don't know how to start?

    Can you help me please?

    And thank you anyway.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor red_dog's Avatar
    Joined
    Jun 2007
    From
    Medgidia, Romania
    Posts
    1,252
    Thanks
    5
    Let x=t=0\Rightarrow f(0)=2f(0)\Rightarrow f(0)=0

    f(1)=f\left(\underbrace{\frac{1}{n}+\frac{1}{n}+\l  dots+\frac{1}{n}}_{n}\right)=nf\left(\frac{1}{n}\r  ight)\Rightarrow f\left(\frac{1}{n}\right)=\frac{1}{n}\cdot f(1)

    f\left(\frac{m}{n}\right)=\frac{m}{n}\cdot f(1)

    Then f(x)=f(1)\cdot x, \ \forall x\in\mathbb{Q}

    Let x\in\mathbb{R}-\mathbb{Q}. Then exists a sequence (x_n)_{n\in\mathbb{N}}, \ x_n\in\mathbb{Q} such as \lim_{x\to\infty}x_n=x

    f(x_n)=f(1)\cdot x_n

    Apply the limit to both sides:

    \lim_{n\to\infty}f(x_n)=f(1)\lim_{x\to\infty}x_n\R  ightarrow f(x)=f(1)\cdot x, \ \forall x\in\mathbb{R}

    f(2009)=2009^{2008}\Rightarrow f(1)\cdot 2009=2009^{2008}\Rightarrow f(1)=2009^{2007}\Rightarrow f(x)=2009^{2007}x
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Aug 2009
    Posts
    62
    Thank you very much
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 0
    Last Post: April 15th 2010, 05:50 PM
  2. Replies: 3
    Last Post: February 23rd 2010, 04:54 PM
  3. Replies: 11
    Last Post: November 15th 2009, 11:22 AM
  4. Replies: 7
    Last Post: August 12th 2009, 04:41 PM
  5. Replies: 1
    Last Post: April 15th 2008, 09:00 AM

Search Tags


/mathhelpforum @mathhelpforum