Use de Moivre's Theorem and the Binomial Theorem to find integers A,B,C,D,E,F such that

$\displaystyle \sin(5\theta)=A\sin^{5}\theta + B\sin^{3}\theta+ C\sin\theta$

$\displaystyle 16\sin^{5}\theta=D\sin\theta+E\sin(3\theta)+F\sin( 5\theta)$.

Any help much appreciated