Results 1 to 3 of 3

Math Help - Another problem

  1. #1
    Newbie AknightwhosayNi's Avatar
    Joined
    Jun 2009
    Posts
    8

    Another problem

    Here's the last of the problems that i'm not sure how to tackle.
    A group of students where studying how fast a plant was growing. Once a day they measured the plant. These was the results:
    Day--- length (cm)
    0 -----0,5
    1 -----0,8
    2 -----1,3
    3 -----2,1
    4 -----3,3
    5 -----5,2
    6 -----8,1
    7 -----13,4

    The students created an equation from this information: y=0,5*1,6^X
    X is time in days. Y is the height of the plant.
    How did the students work out 1,6 from this information?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,546
    Thanks
    539
    Hello, AknightwhosayNi!


    A group of students where studying how fast a plant was growing.
    Once a day they measured the plant. These are the results:

    . . \begin{array}{c|c}<br />
\text{Day} & \text{Height} \\ \hline<br />
0 & 0.5 \\ 1 & 0.8 \\ 2 & 1.3 \\ 3 & 2.1 \\ 4 & 3.3 \\ 5 & 5.2 \\ 6 & 8.1 \\ 7 & 13.4 \end{array}

    The students created an equation from this information: . y\:=\:0.5\cdot 1.6^x
    . . where x is time in days, y is the height of the plant in cm.

    How did the students work out 1.6 from this information?

    They conjectured that the function is of the form: . y \;=\;A\cdot B^x

    To determine A and B, use two values from the table.
    . . We'll use the first two values . . .

    x=0,\;y=0.5\!:\quad 0.5 \:=\:A\cdot B^0 \quad\Rightarrow\quad A \:=\:0.5

    . . Hence, the function (so far) is: . y \;=\;0.5\cdot B^x


    x = 1,\;y = 0.8\!:\quad 0.8 \:=\:0.5B^1 \quad\Rightarrow\quad B \:=\:\frac{0.8}{0.5} \:=\:1.6


    Therefore, the function is: . y \;=\;0.5\cdot1.6^x

    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie AknightwhosayNi's Avatar
    Joined
    Jun 2009
    Posts
    8
    I see... Thanks!
    Follow Math Help Forum on Facebook and Google+

Search Tags


/mathhelpforum @mathhelpforum