Log10(x)=ylog10(3)+1
express y in terms of x
help?
explaination needed though
$\displaystyle \log_{10}(x)=y \cdot \log_{10}(3) + 1$
$\displaystyle \log_{10}(x)-1=y \cdot \log_{10}(3) $
$\displaystyle \log_{10}\left(\dfrac x{10}\right)=y \cdot \log_{10}(3) $
$\displaystyle \dfrac{\log_{10}\left(\dfrac x{10}\right)}{\log_{10}(3)}=y $
which can be simplified to:
$\displaystyle y = \log_3\left(\dfrac x{10} \right)$