# image Geometric Sequence and Recursive Definition

• May 12th 2009, 09:40 PM
SarahGr
image Geometric Sequence and Recursive Definition
.
• May 13th 2009, 03:50 AM
Soroban
Hello, SarahGr!

Quote:

1) In a Geometric Sequence: .$\displaystyle t_3 = 4\:\text{ and }\:t_6= \frac{4}{27}$ . . Find $\displaystyle t_{10}$
We have: .$\displaystyle \begin{array}{cccc} t_3 = 4 & \Rightarrow & t_{_1}r^2 \:=\:4 & [1] \\ t_6 = \frac{4}{27} & \Rightarrow & t_{_1}r^5 \:=\:\frac{4}{27} & [2] \end{array}$

Divide [2] by [1]: .$\displaystyle \frac{t_{_1}r^5}{t_{_1}r^2} \:=\:\frac{\frac{4}{27}}{4} \quad\Rightarrow\quad r^3 \:=\:\frac{1}{27} \quad\Rightarrow\quad r \:=\:\frac{1}{3}$

Substitute into [1]: .$\displaystyle t_{_1}\left(\tfrac{1}{3}\right)^2 \:=\:4 \quad\Rightarrow\quad t_{_1} \:=\:36$

Therefore: .$\displaystyle t_{10} \;=\;t_{_1}r^9 \;=\;36\left(\tfrac{1}{3}\right)^9 \;=\;\frac{36}{19,\!683} \;=\;\frac{4}{2187}$

Quote:

2) Give a recursive definition for the sequence: .$\displaystyle 1, 4, 13, 40, \hdots$
Take the differences of consecutive terms . . .

. . $\displaystyle \begin{array}{ccccccccc}\text{Sequence} & 1 && 4 && 13 && 40 \\ \text{Difference} & & 3 & & 9 & & 27 \end{array}$

Each term is the preceding term plus a power of 3.

. . . . . $\displaystyle a_n \;=\;a_{n-1} + 3^{n-1}$

• May 13th 2009, 08:08 AM
SarahGr
.