what is the inverse function of 3y=2x+7. How will I do that? thanks
Any linear function of the type $\displaystyle y= a\cdot x + b$ , $\displaystyle a \ne 0$ has its inverse of the form $\displaystyle x= \frac {1}{a}\cdot (y-b)$. In your case is $\displaystyle a=\frac {2}{3}$ , $\displaystyle b= \frac{7}{3}$…
Kind regards
$\displaystyle \chi$ $\displaystyle \sigma$
Simple examples of couples of 'direct' and 'inverse' functions are...
$\displaystyle y=f(x)=x^{2} \rightarrow x=f^{-1} (y)= \sqrt {y}$
$\displaystyle y= f(x)= \sin x \rightarrow x=f^{-1} (y)= \sin ^{-1} y$
$\displaystyle y= f(x) = e^{x} \rightarrow x=f^{-1} (y)= \ln y $
In it important to take into account that the inverse function often it is not a single value function, just as in three examples I have given…
Kind regards
$\displaystyle \chi$ $\displaystyle \sigma$