h(x) = (16x9 - 15)3;f(x) =x3

find g(x)

Printable View

- Feb 21st 2009, 11:31 PMkeadyjrprecalc
*h*(*x*) = (16*x*9 - 15)3;*f*(*x*) =*x*3

find g(x)

- Feb 22nd 2009, 01:03 AMGrandadMore information please
- Feb 22nd 2009, 09:07 AMkeadyjrprecalc
Find function

*g*such that*h*=*f*http://www.webassign.net/images/composite.gif*g*.*h*(*x*) = (16*x*9 - 15)3;*f*(*x*) =*x*3

G(x) =

- Feb 22nd 2009, 10:17 AMGrandadCombining functions
Hello keadyjrThanks for clarifying it a bit. I'm still not absolutely sure what the question says, but I think it could be this:

Find the function $\displaystyle g$ such that $\displaystyle h = f \circ g$, if $\displaystyle h(x) = (16x^9-15)^3$ and $\displaystyle f(x) = x^3$.

If this is so, then you need to say this:

$\displaystyle h = f \circ g \Rightarrow h(x) = f(g(x))$

$\displaystyle = (g(x))^3$

$\displaystyle = (16x^9-15)^3$

So $\displaystyle g(x) = 16x^9 -15$

Grandad