Okay, I'll take part a, then you can try b..

a. y = 3x - 5

If a line L is perpendicular to M, then the slope of M * slope of L = -1

So first we need to find the slope of our line, y = 3x - 5.

The general equation of a line is expressed as y = mx + c where m is the slope, and c is some constant. So in our case c = -5, and m = 3.

So the slope of the linea= 3.

Now for a slope to be perpendicular,

slope ofa*slope of new line = -1.

3 * slope of new line = -1

slope of new line = -1/3.

So the slope of the perpendicular line is -1/3.

The method forbis the same...