How do you integrate 2^(4-x) and $\displaystyle 2^x$
thanks.
$\displaystyle \int 2^{(4-x)}dx = \int e^{ln|2^{(4-x)}|} dx $
$\displaystyle = \int e^{(4-x)ln|2|} dx $
$\displaystyle = \int e^{(4ln|2|-xln|2|)} dx $
$\displaystyle = \int e^{(4ln|2|})e^{(-xln|2|)} dx $
Now the first e part is a constant, and the second is of the form $\displaystyle e^Cx $, where C is just some constant. You can integrate those, right?
$\displaystyle \int 2^{x}dx = \int e^{ln|2^{x}|} dx $
$\displaystyle = \int e^{xln|2|} dx $
See?