Results 1 to 3 of 3

Math Help - Vectors (2)

  1. #1
    Member
    Joined
    Jan 2008
    Posts
    132

    Vectors (2)

    Q1: The points A, B and C have position vectors a, b and c respectively, relative to the origin O.

    Show that the area of triangle OAB is \frac{1}{2} \sqrt{|a|^2 |b|^2 - (a\cdot b)}units^2

    (The "a" and "b" above are vectors)

    Q2: The points A, B and C have position vectors a, b and c respectively, relative to the origin O.

    Find the length of projection of AB on AC if a = i - 5j + 3k, b = 2j -4k and c = i + j

    My answer for Q2 is \frac{5}{\sqrt{29}}...is it correct?

    Thank you for helping!
    Last edited by Tangera; January 10th 2009 at 07:23 AM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Grandad's Avatar
    Joined
    Dec 2008
    From
    South Coast of England
    Posts
    2,570
    Thanks
    1

    Scalar product

    Hello Tangera
    Quote Originally Posted by Tangera View Post
    Q1: The points A, B and C have position vectors a, b and c respectively, relative to the origin O.

    Show that the area of triangle OAB is \frac{1}{2} \sqrt{|a|^2 |b|^2 - (a\cdot b)}units^2

    (The "a" and "b" above are vectors)

    Q2: The points A, B and C have position vectors a, b and c respectively, relative to the origin O.

    Find the length of projection of AB on AC if a = i - 5j + 3k, b = 2j -4k and c = i + j

    My answer for Q2 is \frac{5}{\sqrt{29}}...is it correct?

    Thank you for helping!
    Q1 The scalar, or dot, product of two vectors \vec{a} and \vec{b} is |\vec{a}||\vec{b}|\cos\theta, where \theta is the angle between the vectors.

    Now the area of the triangle OAB = \frac{1}{2}OA.OB.\sin\theta = \frac{1}{2}|\vec{a}||\vec{b}|\sin\theta

    = \frac{1}{2}|\vec{a}||\vec{b}|\sqrt{1-\cos^2\theta}

    = \frac{1}{2}\sqrt{|\vec{a}|^2|\vec{b}|^2-|\vec{a}|^2|\vec{b}|^2\cos^2\theta}

    = \frac{1}{2}\sqrt{|\vec{a}|^2|\vec{b}|^2-(\vec{a}.\vec{b})^2}

    Q2 Geometrically, the dot product of \vec{a} and \vec{b} is the length of one vector multiplied by the length of the projection of the other vector onto it. So the length of the projection of \vec{x} onto \vec{y} is given by

    \frac{\vec{x}.\vec{y}}{|\vec{y}|}

    So here we want \frac{\vec{AB}.\vec{AC}}{AC}

    = \frac{(\vec{b} - \vec{a}).(\vec{c}-\vec{a})}{|\vec{c}-\vec{a}|}

    I make the answer \frac{21\sqrt{5}}{5}. Would you like to have another look at it, and get back to me?

    Grandad
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,909
    Thanks
    771
    Hello, Tangera!

    I got a different answer for #2 . . .


    2) The points A, B, C have position vectors \vec a, \vec b, \vec c,, respectively,
    relative to the origin O.

    \text{Find the length of projection of }\overrightarrow{AB}\text{ on }\overrightarrow{AC}\text{ if:} . \begin{array}{ccc}\vec a &= &\vec i - 5\vec j + 3\vec k \\ \vec b &=& 2\vec j -4\vec k \\ \vec c &=& \vec i + \vec j \end{array}

    We have: . \begin{array}{ccc}\vec a &=& \langle 1,\text{-}5,3\rangle \\ \vec b &=& \langle0,2,\text{-}4\rangle \\ \vec c &=& \langle 1,1,0 \rangle \end{array} . \Rightarrow \quad \begin{array}{ccc}\overrightarrow{AB} &=& \langle\text{-}1,7,\text{-}7\rangle \\ \overrightarrow{AC} &=& \langle0,6,\text{-}3\rangle \end{array}


    Formula: . \text{proj}_{\vec v}\vec u \:=\:\frac{\vec u \cdot\vec v}{|\vec v|^2}\,\vec v

    We have: . \text{proj}_{\overrightarrow{AC}}\overrightarrow{A  B} \:=\:\frac{\langle\text{-}1,7,\text{-}7\rangle\cdot\langle0,6,\text{-}3\rangle}{(\sqrt{0^2+6^3+3^2})^2}\,\langle0,6,\te  xt{-}3\rangle . = \;\frac{63}{45}\,\langle 0,6,\text{-}3\rangle


    Its length is: . \left|\frac{7}{5}\langle 0,6,\text{-}3\rangle\right| \;=\;\frac{7}{5}\sqrt{0+36+9} \;=\;\frac{7}{5}\sqrt{45} \;=\;\boxed{\frac{21}{5}\sqrt{5}}


    But check my work . . . please!
    .
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 3
    Last Post: November 15th 2011, 06:10 PM
  2. Replies: 3
    Last Post: June 30th 2011, 09:05 PM
  3. Replies: 2
    Last Post: June 18th 2011, 11:31 AM
  4. [SOLVED] Vectors: Finding coefficients to scalars with given vectors.
    Posted in the Pre-Calculus Forum
    Replies: 2
    Last Post: January 23rd 2011, 01:47 AM
  5. Replies: 4
    Last Post: May 10th 2009, 07:03 PM

Search Tags


/mathhelpforum @mathhelpforum