# Thread: eq. of line in space.

1. ## eq. of line in space.

Give two points A and B in 3d space with co-ordinates:
A(a,b,c) and B(a',b',c'), what is the equation of the line passing through both points?

Thanks for the help.

2. See this maybe it helps.

The parametric equations for a line passing through $(x_1, y_1, z_1)$, $(x_2, y_2, z_2)$ are:
$\begin{cases}x = x_1 + (x_2 - x_1)\cdot t \\
y = y_1 + (y_2 - y_1)\cdot t\\
z = z_1 + (z_2 - z_1)\cdot t \end{cases}$

3. Originally Posted by james_bond
See this maybe it helps.

The parametric equations for a line passing through $(x_1, y_1, z_1)$, $(x_2, y_2, z_2)$ are:
$\begin{cases}x = x_1 + (x_2 - x_1)\cdot t \\
y = y_1 + (y_2 - y_1)\cdot t\\
z = z_1 + (z_2 - z_1)\cdot t \end{cases}$
You can also write a line in three dimensions in "symmetric" form.
Solving each of those equations, for t,

$\frac{x- x_1}{x_2- x_1}= \frac{y- y_1}{y_2- y_1}= \frac{z- z_1}{z_2- z_1}$

I notice you asked for "the" equation of a line in three dimensions. Because a line is only one dimension, you need to "reduce" two dimensions and so need either two equations (3- 2= 1), as I give or introduce a new parameter, t, giving 4 variables with 3 equations: 4- 3= 1.