Results 1 to 8 of 8

Math Help - matrix

  1. #1
    Newbie
    Joined
    Dec 2008
    Posts
    3

    matrix

    ok, so i know this math problem should be easy, but i really dont understand it. pls help me out!
    the following are supposed to be matrices but i do not know how to make them on the computer.

    Let X= (1 1
    1 1)
    Let Y= (1 -1
    -1 1)
    Calculate X^2, X^3, X^4, Y^2, Y^3, Y^4
    By considering integer powers of X and Y, find expressions for Z^n, Y^n, (X+Y)^n

    Let A= aX and B=bY where a and b are constants

    Use different values of a and b to calculate A^2, A^3, A^4, B^2, B^3, B^4

    By considering interger powers of A and B, find expressions for A^n, B^n, (A+B)^n

    Now consider M= (a+b a-b
    a-b a+b)

    Show that M= A+B and that M^2= A^2+B^2

    Hence, find the general statement that expresses M^n in terms of aX and bY

    Test the validity of your general statement by using different Values of a, b, n

    Discuss the scope and limitations of your general statement

    Use an algebraic method to explain how you arrived at your general statement.

    Thanks so mcuh for your help!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,735
    Thanks
    642
    Hello, samanthaj1001!

    This will take a while . . . I'll answer this in several sessions . . .


    1) Let X\:=\:\begin{bmatrix}1& 1  \\ 1&  1\end{bmatrix}\quad Y \:=\:\begin{bmatrix}1 & \text{-}1\\ \text{-}1 &1 \end{bmatrix}

    (a) Calculate: X^2,\;X^3,\;X^4,\;Y^2,\;Y^3,\;Y^4

    (b) By considering integer powers of X and Y, find expressions for X^n,\;Y^n,\;(X+Y)^n
    (a)

    X^2 \;=\;\begin{bmatrix}1&1\\1&1\end{bmatrix}\,\begin{  bmatrix}1&1\\1&1\end{bmatrix} \;=\;\begin{bmatrix}2&2\\2&2\end{bmatrix}

    X^3 \;=\;X^2\cdot X \;=\; \begin{bmatrix}2&2\\2&2 \end{bmatrix} \,\begin{bmatrix}1&1\\1&1\end{bmatrix}  \;=\;\begin{bmatrix}4&4\\4&4\end{bmatrix}

    X^4 \;=\;X^3\cdot X \;=\;\begin{bmatrix}4&4\\4&4\end{bmatrix}\,\begin{  bmatrix}1&1\\1&1\end{bmatrix} \;=\;\begin{bmatrix}8&8\\8&8\end{bmatrix}


    Y^2 \;=\;\begin{bmatrix}1&\text{-}1\\\text{-}1&1\end{bmatrix}\,\begin{bmatrix}1&\text{-}1\\\text{-}1&1\end{bmatrix} \;=\;\begin{bmatrix}2&\text{-}2\\\text{-}2&2\end{bmatrix}

    Y^3 \;=\;Y^2\cdot Y \;=\;\begin{bmatrix}2&\text{-}2\\\text{-}2&2\end{bmatrix}\,\begin{bmatrix}1&\text{-}1\\\text{-}1&1\end{bmatrix} \;=\;\begin{bmatrix}4&\text{-}4\\ \text{-}4&4\end{bmatrix}

    Y^4 \;=\;Y^3\cdot Y \;=\;\begin{bmatrix}4&\text{-}4\\\text{-}4&4\end{bmatrix}\,\begin{bmatrix}1&\text{-}1\\\text{-}1&1\end{bmatrix} \;=\;\begin{bmatrix}8&\text{-}8\\\text{-}8&8\end{bmatrix}


    (b)

    X + Y \;=\;\begin{bmatrix}1&1\\1&1\end{bmatrix} + \begin{bmatrix}1&\text{-}1\\\text{-}1&1\end{bmatrix} \;=\;\begin{bmatrix}2&0\\0&2\end{bmatrix}

    (X+Y)^2 \;=\;\begin{bmatrix}2&0\\0&2\end{bmatrix}\,\begin{  bmatrix}2&0\\0&2\end{bmatrix} \;=\;\begin{bmatrix}4&0\\0&4\end{bmatrix}

    (X+Y)^3 \;=\;\begin{bmatrix}4&0\\0&4\end{bmatrix}\,\begin{  bmatrix}2&0\\0&2\end{bmatrix} \;=\;\begin{bmatrix}8&0\\0&8\end{bmatrix}


    . . . X^n \;=\;\begin{bmatrix}2^{n-1} & 2^{n-1} \\ 2^{n-1} & 2^{n-1}\end{bmatrix} \qquad Y^n \;=\;\begin{bmatrix}2^{n-1} & \text{-}2^{n-1} \\ \text{-}2^{n-1} & 2^{n-1}\end{bmatrix} \qquad (X + Y)^n \;=\;\begin{bmatrix}2^n & 0\\ 0&2^n\end{bmatrix}


    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Dec 2008
    Posts
    3
    ok.. answer it in as many sessions as u want.. what you posted earlier was very helpful! thanks!
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,735
    Thanks
    642
    Hello again, Samantha!

    X\:=\:\begin{bmatrix}1&1\\1&1\end{bmatrix}\quad Y\:=\:\begin{bmatrix}1&\text{-}1 \\ \text{-}1 & 1\end{bmatrix}

    Let: . A\:=\:aX,\;\;B\:=\:bY\text{ where }a\text{ and }b\text{ are constants.} .[1]

    Now consider: . M\:=\:\begin{bmatrix}a+b& a-b \\ a-b & a+b \end{bmatrix}


    (a) Show that: . M\:=\: A+B

    From [1], we have: . A \:=\:\begin{bmatrix}a&a\\a&a\end{bmatrix} \quad B \:=\:\begin{bmatrix}b & \text{-}b \\ \text{-}b & b \end{bmatrix}

    Hence: . A + B \:=\:\begin{bmatrix}a&a\\a&a\end{bmatrix} + \begin{bmatrix}b & \text{-}b \\\text{-}b&b\end{bmatrix} \;=\;\begin{bmatrix}a+b & a-b \\ a-b & a+b\end{bmatrix} \;=\;M




    (b) Show that: . M^2 \:=\:A^2+B^2

    M^2 \;=\;\begin{bmatrix}a+b&a-b\\a-b&a+b\end{bmatrix}\, \begin{bmatrix}a+b&a-b\\a-b&a+b\end{bmatrix}

    . . = \;\begin{bmatrix}(a+b)^2+(a-b)^2 & (a+b)(a-b)+(a-b)(a+b) \\ (a-b)(a+b) + (a+b)(a-c) & (a-b)^2 + (a+b)^2 \end{bmatrix}

    . . = \;\begin{bmatrix}a^2+2ab + b^2 + a^2 - 2ab + b^2 & a^2 - b^2 + a^2 + b^2 \\ a^2 - b^2 + a^2 - b^2 & a^2 - 2ab + b^2 + a^2 + 2ab + b^2 \end{bmatrix}

    . . = \;\begin{bmatrix}2a^2+2b^2 & 2a^2-2b^2 \\ 2a^2-2b^2 & 2a^2+2b^2\end{bmatrix} .[2]



    A^2 \:=\:\begin{bmatrix}a&a\\a&a\end{bmatrix}\,\begin{  bmatrix}a&a\\a&a\end{bmatrix} \;=\;\begin{bmatrix}2a^2 &2a^2\\2a^2 & 2a^2 \end{bmatrix} . . . B^2 \;=\;\begin{bmatrix}b&\text{-}b\\\text{-}b&b\end{bmatrix}\,\begin{bmatrix}b&\text{-}b\\\text{-}b&b\end{bmatrix} \;=\;\begin{bmatrix}2b^2&\text{-}2b^2\\\text{-}2b^2&2b^2\end{bmatrix}


    A^2 + B^2 \;=\;\begin{bmatrix}2a^2&2a^2\\2a^2&2a^2\end{bmatr  ix} + \begin{bmatrix}2b^2&\text{-}2b^2\\\text{-}2b^2&2b^2\end{bmatrix} \;= \;\begin{bmatrix}2a^2+2b^2 & 2a^2-2b^2\\2a^2-2b^2 & 2a^2+2b^2\end{bmatrix} .[3]


    Since [2] = [3]: . M^2 \:=\:A^2+B^2




    (c)Hence, find the general statement that expresses M^n in terms of A and B

    Using a lot of scrap paper, I found that the pattern holds . . .

    . . \begin{array}{ccc}M &=& A + B \\ M^2 &=& A^2 + B^2 \\ M^3 &=& A^3 + B^3 \\ M^4 &=& A^4+B^4 \\  \vdots & & \vdots \end{array}


    Therefore: . M^n \;=\;A^n + B^n

    Follow Math Help Forum on Facebook and Google+

  5. #5
    Newbie
    Joined
    Dec 2008
    Posts
    3
    wow this is all soo helpful.. thanks so much! the rest of it seems to be the trickier part tho, but i know ull be able to help me! thanks!
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,735
    Thanks
    642
    Hello again, Samantha!

    Let X\:=\:\begin{bmatrix}1&1 \\1&1 \end{bmatrix} \qquad Y \:=\:\begin{bmatrix}1&\text{-}1\\\text{-}1&1\end{bmatrix}

    Let: . A\:=\:aX\:\text{ and }\:B\:=\:bY\:\text{  where }a\text{ and }b\text{ are constants.} . [1]

    (a) Use different values of a\text{ and }b to calculate: . A^2,\:A^3,\:A^4,\:B^2,\:B^3,\:B^4
    From [1] we have: . A \:=\:\begin{bmatrix}a&a\\a&a\end{bmatrix}\qquad B \:=\:\begin{bmatrix}b&\text{-}b\\\text{-}b&b\end{bmatrix}


    A^2 \;=\;\begin{bmatrix}a&a\\a&a\end{bmatrix}\,\begin{  bmatrix}a&a\\a&a\end{bmatrix} \;=\; \begin{bmatrix}2a^2&2a^2\\2a^2&2a^2\end{bmatrix}

    A^3 \;=\;A^2\cdot A \;=\;\begin{bmatrix}2a^2&2a^2\\2a^2&2a^2\end{bmatr  ix}\,\begin{bmatrix}a&a\\a&a\end{bmatrix} \;=\;\begin{bmatrix}4a^3&4a^3\\4a^3&4a^3 \end{bmatrix}

    A^4 \;=\;A^3\cdot A \;=\;\begin{bmatrix}4a^3&4a^3\\4a^3&4a^3\end{bmatr  ix}\,\begin{bmatrix}a&a\\a&a\end{bmatrix} \;=\; \begin{bmatrix}8a^4&8a^4\\8a^4&8a^4\end{bmatrix}


    B^2 \:=\:\begin{bmatrix}b&\text{-}b\\ \text{-}b&b\end{bmatrix}\,\begin{bmatrix}b&\text{-}b\\ \text{-}b&b^2\end{bmatrix} \;=\;\begin{bmatrix}2b^2 & \text{-}2b^2\\\text{-}2b^2&2b^2\end{bmatrix}

    B^3 \;=\;B^2\cdot B \;=\;\begin{bmatrix}2b^2&\text{-}2b^2\\ \text{-}2b^2&2b^2\end{bmatrix}\,\begin{bmatrix}b&\text{-}b\\ \text{-}b&b\end{bmatrix} \;=\; \begin{bmatrix}4a^3&\text{-}4b^3 \\ \text{-}4b^3&4b^3\end{bmatrix}

    B^4 \;=\;B^3\cdot B \;=\;\begin{bmatrix}4b^3&\text{-}4b^3\\ \text{-}4b^2 & 4b^3 \end{bmatrix}\,\begin{bmatrix}b&\text{-}b\\ \text{-}b&b\end{bmatrix} \;=\;\begin{bmatrix}8b^4&\text{-}8b^4 \\ \text{-}8b^4&8b^4\end{bmatrix}




    By considering interger powers of A\text{ and }B, find expressions for: .  A^n,\:B^n,\: (A+B)^n

    A^n \;=\;\begin{bmatrix}2^{n-1}a^n & 2^{n-1}a^n \\ 2^{n-1}a^n & 2^{n-1}a^n \end{bmatrix} \;=\;2^{n-1}a^nX

    B^n \;=\;\begin{bmatrix}2^{n-1}b^n & \text{-}2^{n-1}b^n \\ \text{-}2^{n-1}b^n & 2^{n-1}b^n\end{bmatrix} \;=\;2^{n-1}b^nY


    We have already worked out the powers of: M \:=\:A + B in a previous segment.


    I'll leave the "Test, Discuss, and Explain" portions for you . . .

    Follow Math Help Forum on Facebook and Google+

  7. #7
    Newbie
    Joined
    Jan 2009
    Posts
    2

    two more question about this problem

    I was wondering how an algebraic method can be used to explain how to arrive at the general statement (M^n=A^n+B^n) or (M^n=aX^n+bY^n)...same thing.
    Follow Math Help Forum on Facebook and Google+

  8. #8
    Newbie
    Joined
    Jan 2009
    Posts
    2
    by the way, i just want to point out that I'm not asking for the answer to my question...it's not that I want the exact answer on how to do it. I just want some hints on how to approach that question or some clarification and guidance on what exactly it is that it is asking. I've done the whole IB internal assesment on my own (unlike some people who are too lazy and just wanted the straight answer so they could copy/paste and hand it in...at least the answer given here helped me check my own work) but I'm stuck on how to work that last one. I would really appreciate some help.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 2
    Last Post: November 27th 2010, 03:07 PM
  2. [SOLVED] Elementary matrix, restore to identity matrix
    Posted in the Advanced Algebra Forum
    Replies: 3
    Last Post: February 13th 2010, 09:04 AM
  3. unitary and upper triangular matrix => diagonal matrix
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: December 10th 2009, 06:52 PM
  4. Replies: 3
    Last Post: March 17th 2009, 10:10 AM
  5. Replies: 4
    Last Post: September 24th 2007, 04:12 AM

Search Tags


/mathhelpforum @mathhelpforum