# Thread: Inequality using sign chart

1. ## Inequality using sign chart

Solve the inequality using a sign chart.

(x^3 - 4x)/(x^2 + 2) ≤ 0.

I'm not really sure how to start, but I do know how to use a sign chart.
Any help would be appreciated.

2. You mean something like

$\displaystyle \begin{array}{*{20}c} {} &\vline & {( - \infty , - 2)} &\vline & {( - 2,0)} &\vline & {(0,2)} &\vline & {(2,\infty )} \\ \hline x &\vline & - &\vline & - &\vline & + &\vline & + \\ \hline {x - 2} &\vline & - &\vline & - &\vline & - &\vline & + \\ \hline {x + 2} &\vline & - &\vline & + &\vline & + &\vline & + \\ \end{array}$

?

3. Originally Posted by Krizalid
You mean something like

$\displaystyle \begin{array}{*{20}c} {} &\vline & {( - \infty , - 2)} &\vline & {( - 2,0)} &\vline & {(0,2)} &\vline & {(2,\infty )} \\ \hline x &\vline & - &\vline & - &\vline & + &\vline & + \\ \hline {x - 2} &\vline & - &\vline & - &\vline & - &\vline & + \\ \hline {x + 2} &\vline & - &\vline & + &\vline & + &\vline & + \\ \end{array}$

?

Yes, but I was able to figure it out.
If at all possible, could you look at my post titled Pre-Calc HW questions?
I really need help on those.
Thanks!!