If log a = 2 and log b = 3, what is the numerical value of [log sqrt{a}/log (b^3)]?
Follow Math Help Forum on Facebook and Google+
Originally Posted by magentarita If log a = 2 and log b = 3, what is the numerical value of [log sqrt{a}/log (b^3)]? Use this propery : $\displaystyle \log a^b=b \log(a)$ hence : $\displaystyle \frac{\log \sqrt{a}}{\log b^3}=\frac{\log a^{1/2}}{\log b^3}=\frac{\frac 12 ~ \log(a)}{3 \log(b)}$ I'm sure you can finish :P
Originally Posted by Moo Use this propery : $\displaystyle \log a^b=b \log(a)$ hence : $\displaystyle \frac{\log \sqrt{a}}{\log b^3}=\frac{\log a^{1/2}}{\log b^3}=\frac{\frac 12 ~ \log(a)}{3 \log(b)}$ I'm sure you can finish :P Yes, I can finish. Thanks
View Tag Cloud