help please! If loga b = 2 and loga c = 4, find the numeric value of the following two expressions: loga (log base a) (a) loga(b^2 c^3) it's log base a, b squared, c cubed. (b) logb(c) log base b, c
Follow Math Help Forum on Facebook and Google+
Originally Posted by rafaeli help please! If loga b = 2 and loga c = 4, find the numeric value of the following two expressions: loga (log base a) (a) loga(b^2 c^3) it's log base a, b squared, c cubed. This is the same as $\displaystyle \log_a(b^2)+\log_a(c^3)=2\log_ab+3\log_ac$ What do you think the answer is now? (b) logb(c) log base b, c I believe this is the same thing as $\displaystyle \frac{\log_ac}{\log_ab}$. So what do you think the answer is now? --Chris
Originally Posted by Chris L T521 This is the same as $\displaystyle \log_a(b^2)+\log_a(c^3)=2\log_ab+3\log_ac$ What do you think the answer is now? I believe this is the same thing as $\displaystyle \frac{\log_ac}{\log_ab}$. So what do you think the answer is now? --Chris thanks, so the first answer is 16? and the second i still don't get, the problem is logbC . .. . (log base b, c)
View Tag Cloud