Results 1 to 3 of 3

Thread: log change of base...

  1. #1
    Newbie
    Joined
    Oct 2008
    Posts
    6

    log change of base...




    help!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Newbie
    Joined
    Oct 2008
    Posts
    4
    log (with base (a)) of f(x) is equal to log[f(x)] divided by log(a)
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    849
    Hello, namp4namp!

    Solve: .$\displaystyle \log_2(x+1) - \log_4(x) \;=\;1$ .[1]

    Let: $\displaystyle \log_4(x) \:=\:P\quad\Rightarrow\quad 4^P \:=\:x$

    Take logs (base 2): .$\displaystyle \log_2(4^P) \;=\;\log_2(x) \quad\Rightarrow\quad \log_2(2^2)^P \;=\;\log_2(x)
    $

    . . $\displaystyle \log_2(2^{2P}) \;=\;\log_2(x) \quad\Rightarrow\quad2P\!\cdot\!\underbrace{\log_2 (2)}_{\text{This is 1}} \;=\;\log_2(x) \quad\Rightarrow\quad P \;=\;\tfrac{1}{2}\log_2(x)$
    Hence: .$\displaystyle \log_4(x) \;=\;\tfrac{1}{2}\log_2(x)$


    Substitute into [1]: .$\displaystyle \log_2(x+1) - \tfrac{1}{2}\log_2(x) \;=\;1$

    Multiply by 2: .$\displaystyle 2\log_2(x+1) - \log_2(x) \;=\;2 \quad\Rightarrow\quad 2\log_2(x+1)\;=\;\log_2(x) + \log_2(4)$

    . . $\displaystyle \log_2(x+1)^2 \;=\;\log_2(4x) \quad\Rightarrow\quad (x+1)^2 \;=\;4x$

    . . $\displaystyle x^2+2x+1 \;=\;4x \quad\Rightarrow\quad x^2 - 2x + 1 \;=\;0$

    Factor: .$\displaystyle (x-1)(x-1) \;=\;0 \quad\Rightarrow\quad \boxed{x \:=\:1}$

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: Dec 13th 2011, 04:21 AM
  2. change of base?
    Posted in the Calculus Forum
    Replies: 1
    Last Post: Sep 20th 2011, 04:49 AM
  3. change of base
    Posted in the Pre-Calculus Forum
    Replies: 2
    Last Post: May 14th 2009, 09:31 AM
  4. change of base
    Posted in the LaTeX Help Forum
    Replies: 1
    Last Post: May 13th 2009, 01:56 PM
  5. Change of base
    Posted in the Calculus Forum
    Replies: 1
    Last Post: Sep 12th 2007, 12:02 AM

Search Tags


/mathhelpforum @mathhelpforum