Thread: Graphing a rational function with an absolute value

1. Graphing a rational function with an absolute value

f(x)=|x+1|/(x+1)

How do I graph this function?

2. Originally Posted by rod789
f(x)=|x+1|/(x+1)

How do I graph this function?
remember, $|x| = \left \{ \begin{array}{lr}x & \mbox{ if } x \ge 0 \\ & \\ -x & \mbox{ if } x < 0 \end{array} \right.$

so, $f(x) = \frac {|x + 1|}{x + 1} = \left \{ \begin{array}{lr} \frac {x + 1}{x + 1} = 1 & \mbox{ if } x + 1 \ge 0 \\ & \\ \frac {-(x + 1)}{x + 1} = -1 & \mbox{ if } x + 1 < 0 \end{array} \right.$

can you continue?

3. Originally Posted by Jhevon
remember, $|x| = \left \{ \begin{array}{lr}x & \mbox{ if } x \ge 0 \\ & \\ -x & \mbox{ if } x < 0 \end{array} \right.$

so, $f(x) = \frac {|x + 1|}{x + 1} = \left \{ \begin{array}{lr} \frac {x + 1}{x + 1} = 1 & \mbox{ if } x + 1 \ge 0 \\ & \\ \frac {-(x + 1)}{x + 1} = -1 & \mbox{ if } x + 1 < 0 \end{array} \right.$

can you continue?
yeah, thanks

,

,

,

,

,

,

,

,

how to draw graph of two modulus rational

Click on a term to search for related topics.