Results 1 to 3 of 3

Math Help - How Far is the Ranger

  1. #1
    MHF Contributor
    Joined
    Jul 2008
    From
    NYC
    Posts
    1,489

    How Far is the Ranger

    A forest ranger is walking on a path inclined at 5 degrees to the horizontal directly toward a 100-foot-tall fire observation tower. The angle of elevation from the path to the top of the tower is 40 degrees. How far is the ranger from the top of the tower at this time?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,735
    Thanks
    642
    Hello, magentarita!

    I assume you made a sketch . . .


    A forest ranger is walking on a path inclined at 5 to the horizontal
    directly toward a 100-foot fire observation tower.
    The angle of elevation from the path to the top of the tower is 40.
    How far is the ranger from the top of the tower at this time?
    Code:
                                  * A
                                * |
                              *   | 
                            * 50 | 100
                          *       | 
                     d  *         |
                      *           | 
                    *         95 | 
                  *               * B 
                * 35       *  85|
              *       *           |
            *   *   5            |
        R * - - - - - - - - - - - * C

    The tower is: AB = 100
    The ranger is at R.

    \angle BRC = 5^o;\;\;\angle ARC = 40^o \quad\Rightarrow\quad \angle ARB = 35^o

    In right triangle BRC\!:\;\;\angle BRC = 5^o \quad\Rightarrow\quad \angle RBC = 85^o \quad\Rightarrow\quad \angle ABR = 95^o

    In \Delta ABR\!:\;\;\angle ARB = 35^o,\;\angle ABR = 95^o \quad\Rightarrow\quad \angle RAB = 50^o

    Let d \:=\:RA


    In \Delta ABR, the Law of Sines: . \frac{d}{\sin95^o} \:=\:\frac{100}{\sin35^o}

    Therefore: . d \;=\;\frac{100\sin95^o}{\sin35^o} \;=\;173.6812454 \;\approx\;\boxed{173.7\text{ feet}}

    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor
    Joined
    Jul 2008
    From
    NYC
    Posts
    1,489

    Smile Great...

    Quote Originally Posted by Soroban View Post
    Hello, magentarita!

    I assume you made a sketch . . .

    Code:
                                  * A
                                * |
                              *   | 
                            * 50 | 100
                          *       | 
                     d  *         |
                      *           | 
                    *         95 | 
                  *               * B 
                * 35       *  85|
              *       *           |
            *   *   5            |
        R * - - - - - - - - - - - * C
    The tower is: AB = 100
    The ranger is at R.

    \angle BRC = 5^o;\;\;\angle ARC = 40^o \quad\Rightarrow\quad \angle ARB = 35^o

    In right triangle BRC\!:\;\;\angle BRC = 5^o \quad\Rightarrow\quad \angle RBC = 85^o \quad\Rightarrow\quad \angle ABR = 95^o

    In \Delta ABR\!:\;\;\angle ARB = 35^o,\;\angle ABR = 95^o \quad\Rightarrow\quad \angle RAB = 50^o

    Let d \:=\:RA


    In \Delta ABR, the Law of Sines: . \frac{d}{\sin95^o} \:=\:\frac{100}{\sin35^o}

    Therefore: . d \;=\;\frac{100\sin95^o}{\sin35^o} \;=\;173.6812454 \;\approx\;\boxed{173.7\text{ feet}}
    Great work as always. Tell me, how do you make this pictures?
    Follow Math Help Forum on Facebook and Google+

Search Tags


/mathhelpforum @mathhelpforum