Question is find the value of

[tex]

\mathop {\lim }\limits_{x \to 9} \frac{{t - 9}}{{3 - \sqrt t }}

/MATH]

This is as far as I get

$\displaystyle

\mathop {\lim }\limits_{x \to 9} \frac{{t - 9}}{{3 - \sqrt t }} \\

= \mathop {\lim }\limits_{x \to 9} \frac{{t - 9}}{{3 - \sqrt t }} \times \frac{{3 + \sqrt t }}{{3 + \sqrt t }} \\

= \mathop {\lim }\limits_{x \to 9} \frac{{t^{\frac{3}{2}} + 3t - 9\sqrt t - 27}}{{9 - t}} \\

$

At this stage I'm left with a divide by zero case, if I sub in 9 in an attempt to find the limit. Where do I go from here?